首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sobrado P  Fitzpatrick PF 《Biochemistry》2003,42(47):13833-13838
The flavoenzyme tryptophan 2-monooxygenase catalyzes the oxidation of tryptophan to indoleacetamide, carbon dioxide, and water. The enzyme is a homologue of l-amino acid oxidase. In the structure of l-amino acid oxidase complexed with aminobenzoate, Tyr372 hydrogen bonds with the carboxylate of the inhibitor in the active site. All 10 conserved tyrosine residues in tryptophan 2-monooxygenase were mutated to phenylalanine; steady state kinetic characterization of the purified proteins identified Tyr413 as the residue homologous to Tyr372 of l-amino acid oxidase. Y413F and Y413A tryptophan 2-monooxygenase were characterized more completely with tryptophan as the substrate to probe the contribution of this residue to catalysis. Mutation of Tyr413 to phenylalanine results in a decrease in the value of the first-order rate constant for reduction of 35-fold and a decrease in the rate constant for oxidation of 11-fold. Mutation to alanine decreases the rate constant for reduction by 200-fold and that for oxidation by 33-fold. Both mutations increase the K(d) value for tryptophan and the K(i) values for the competitive inhibitors indoleacetamide and indole pyruvate by 5-10-fold. Both mutations convert the enzyme to an oxidase, in that the products of the catalytic reactions of both are indolepyruvate and hydrogen peroxide. The V/K(trp)-pH profiles for the Tyr413 mutant enzymes no longer show the pK(a) value of 9.9 seen in that for the wild-type enzyme, allowing identification of Tyr413 as the active site residue in the wild-type enzyme which must be protonated for catalysis. Substitution of Tyr413 abolishes the formation of the long wavelength charge transfer species observed in the wild-type enzyme. The data are consistent with the main role of Tyr413 being to maintain the correct orientation of tryptophan for effective hydride transfer and imino acid decarboxylation.  相似文献   

2.
Acyl-CoA oxidase (ACO) catalyzes the first and rate-determining step of the peroxisomal beta-oxidation of fatty acids. The crystal structure of ACO-II, which is one of two forms of rat liver ACO (ACO-I and ACO-II), has been solved and refined to an R-factor of 20.6% at 2.2-A resolution. The enzyme is a homodimer, and the polypeptide chain of the subunit is folded into the N-terminal alpha-domain, beta-domain, and C-terminal alpha-domain. The X-ray analysis showed that the overall folding of ACO-II less C-terminal 221 residues is similar to that of medium-chain acyl-CoA dehydrogenase (MCAD). However, the N-terminal alpha- and beta-domains rotate by 13 with respect to the C-terminal alpha-domain compared with those in MCAD to give a long and large crevice that accommodates the cofactor FAD and the substrate acyl-CoA. FAD is bound to the crevice between the beta- and C-terminal domains with its adenosine diphosphate portion interacting extensively with the other subunit of the molecule. The flavin ring of FAD resides at the active site with its si-face attached to the beta-domain, and is surrounded by active-site residues in a mode similar to that found in MCAD. However, the residues have weak interactions with the flavin ring due to the loss of some of the important hydrogen bonds with the flavin ring found in MCAD. The catalytic residue Glu421 in the C-terminal alpha-domain seems to be too far away from the flavin ring to abstract the alpha-proton of the substrate acyl-CoA, suggesting that the C-terminal domain moves to close the active site upon substrate binding. The pyrimidine moiety of flavin is exposed to the solvent and can readily be attacked by molecular oxygen, while that in MCAD is protected from the solvent. The crevice for binding the fatty acyl chain is 28 A long and 6 A wide, large enough to accommodate the C23 acyl chain.  相似文献   

3.
In the crystal structure of chicken sulfite oxidase, the residue Tyr(322) (Tyr(343) in human sulfite oxidase) was found to directly interact with a bound sulfate molecule and was proposed to have an important role in mediating the substrate specificity and catalytic activity of this molybdoprotein. In order to understand the role of this residue in the catalytic mechanism of sulfite oxidase, steady-state and stopped-flow analyses were performed on wild-type and Y343F human sulfite oxidase over the pH range 6-10. In steady-state assays of Y343F sulfite oxidase using cytochrome c as the electron acceptor, k(cat) was somewhat impaired ( approximately 34% wild-type activity at pH 8.5), whereas the K(m)(sulfite) showed a 5-fold increase over wild type. In rapid kinetic assays of the reductive half-reaction of wild-type human sulfite oxidase, k(red)(heme) changed very little over the entire pH range, with a significant increase in K(d)(sulfite) at high pH. The k(red)(heme) of the Y343F variant was significantly impaired across the entire pH range, and unlike the wild-type protein, both k(red)(heme) and K(d)(sulfite) were dependent on pH, with a significant increase in both kinetic parameters at high pH. Additionally, reduction of the molybdenum center by sulfite was directly measured for the first time in rapid reaction assays using sulfite oxidase lacking the N-terminal heme-containing domain. Reduction of the molybdenum center was quite fast (k(red)(Mo) = 972 s(-1) at pH 8.65 for wild-type protein), indicating that this is not the rate-limiting step in the catalytic cycle. Reduction of the molybdenum center of the Y343F variant by sulfite was more significantly impaired at high pH than at low pH. These results demonstrate that the Tyr(343) residue is important for both substrate binding and oxidation of sulfite by sulfite oxidase.  相似文献   

4.
Medium-chain acyl-CoA dehydrogenase (MCAD) is a homotetrameric flavoprotein which catalyses the initial step of the beta-oxidation of medium-chain fatty acids. Mutations in MCAD may cause disease in humans. A Y42H mutation is frequently found in babies identified by newborn screening with MS/MS, yet there are no reports of patients presenting clinically with this mutation. As a basis for judging its potential consequences we have examined the protein phenotype of the Y42H mutation and the common disease-associated K304E mutation. Our studies of the intracellular biogenesis of the variant proteins at different temperatures in isolated mitochondria after in vitro translation, together with studies of cultured patient cells, indicated that steady-state levels of the Y42H variant in comparison to wild-type were decreased at higher temperature though to a lesser extent than for the K304E variant. To distinguish between effects of temperature on folding/assembly and the stability of the native enzyme, the thermal stability of the variant proteins was studied after expression and purification by dye affinity chromatography. This showed that, compared with the wild-type enzyme, the thermostability of the Y42H variant was decreased, but not to the same degree as that of the K304E variant. Substrate binding, interaction with the natural electron acceptor, and the binding of the prosthetic group, FAD, were only slightly affected by the Y42H mutation. Our study suggests that Y42H is a temperature sensitive mutation, which is mild at low temperatures, but may have deleterious effects at increased temperatures.  相似文献   

5.
Rat peroxisomal acyl-CoA oxidase I is a key enzyme for the beta-oxidation of fatty acids, and the deficiency of this enzyme in patient has been previously reported. It was found that rat acyl-CoA oxidase I has intrinsic enoyl-CoA isomerase activity, which was confirmed using incubation followed with HPLC analysis in this study. Various 3-enoyl-CoA substrates with cis or trans configuration were synthesized and used in the study of enzyme substrate specificity. The isomerase activity of the enzyme was characterized through studies of kinetics, pH dependence, and enzyme inhibition. Most k(cat)/K(M) values of rat peroxisomal acyl-CoA oxidase I for isomerization reaction are comparable with those of authentic rat liver peroxisomal Delta(3)-Delta(2)-enoyl-CoA isomerase and rat liver peroxisomal multifunctional enzyme 1 when hexenoyl-CoA and octenoyl-CoA with cis- or trans-configuration were used as substrate. Glu421 was found to be the catalytic residue for both oxidase and isomerase activities of the enzyme. The isomerase activity of rat peroxisomal acyl-CoA oxidase I is probably due to a spontaneous process driven by thermodynamic equilibrium with formation of a conjugated structure after deprotonation of substrate alpha-proton. The energy level of transition state may be lowered by a stable dienolate intermediate, which gain further stabilization via charge transfer with electron-deficient FAD cofactor of the enzyme.  相似文献   

6.
We showed that the alpha-CH(2) --> NH substitution in octanoyl-CoA alters the ground and transition state energies for the binding of the CoA ligands to medium-chain acyl-CoA dehydrogenase (MCAD), and such an effect is caused by a small electrostatic difference between the ligands. To ascertain the extent that the electrostatic contribution of the ligand structure and/or the enzyme site environment modulates the thermodynamics of the enzyme-ligand interaction, we undertook comparative microcalorimetric studies for the binding of 2-azaoctanoyl-CoA (alpha-CH(2) --> NH substituted octanoyl-CoA) and octenoyl-CoA to the wild-type and Glu-376 --> Gln mutant enzymes. The experimental data revealed that both enthalpy (DeltaH degrees ) and heat capacity changes (DeltaC(p) degrees ) for the binding of 2-azaoctanoyl-CoA (DeltaH degrees (298) = -21.7 +/- 0.8 kcal/mole, DeltaC(p) degrees = -0.627 +/- 0.04 kcal/mole/K) to the wild-type MCAD were more negative than those obtained for the binding of octenoyl-CoA (DeltaH degrees (298) = -17.2 +/- 1.6 kcal/mole, DeltaC(p) degrees = -0.526 +/- 0.03 kcal/mole/K). Of these, the decrease in the magnitude of DeltaC(p) degrees for the binding of 2-azaoctanoyl-CoA (vis-à-vis octenoyl-CoA) to the enzyme was unexpected, because the former ligand could be envisaged to be more polar than the latter. To our further surprise, the ligand-dependent discrimination in the above parameters was completely abolished on Glu-376 --> Gln mutation of the enzyme. Both DeltaH degrees and DeltaC(p) degrees values for the binding of 2-azaoctanoyl-CoA (DeltaH degrees (298) = -13.3 +/- 0.6 kcal/mole, DeltaC(p) degrees = -0.511 +/- 0.03 kcal/mole/K) to the E376Q mutant enzyme were found to be correspondingly identical to those obtained for the binding of octenoyl-CoA (DeltaH degrees (298) = -13.2 +/- 0.6 kcal/mole, DeltaC(p) degrees = -0.520 +/- 0.02 kcal/mole/K). However, in neither case could the experimentally determined DeltaC(p) degrees values be predicted on the basis of the changes in the water accessible surface areas of the enzyme and ligand species. Arguments are presented that the origin of the above thermodynamic differences lies in solvent reorganization and water-mediated electrostatic interaction between ligands and enzyme site groups, and such interactions are intrinsic to the molecular basis of the enzyme-ligand complementarity.  相似文献   

7.
Yeast xylose reductases are hypothesized as hybrid enzymes as their primary sequences contain elements of both the aldo-keto reductases (AKR) and short chain dehydrogenase/reductase (SDR) enzyme families. During catalysis by members of both enzyme families, an essential Lys residue H-bonds to a Tyr residue that donates proton to the aldehyde substrate. In the Saccharomyces cerevisiae xylose reductase, Tyr49 has been identified as the proton donor. However, the primary sequence of the enzyme contains two Lys residues, Lys53 and Lys78, corresponding to the conserved motifs for SDR and AKR enzyme families, respectively, that may H-bond to Tyr49. We used site-directed mutagenesis to substitute each of these Lys residues with Met. The activity of the K53M variant was slightly decreased as compared to the wild-type, while that of the K78M variant was negligible. The results suggest that Lys78 is the essential residue that H-bonds to Tyr49 during catalysis and indicate that the active site residues of yeast xylose reductases match those of the AKR, rather than SDR, enzymes. Intrinsic enzyme fluorescence spectroscopic analysis suggests that Lys78 may also contribute to the efficient binding of NADPH to the enzyme.  相似文献   

8.
An effective EBV-based expression system for eucaryotic cells has been developed and used for the study of the mitochondrial enzyme medium-chain acyl-CoA dehydrogenase (MCAD). 1325 bp of PCR-generated cDNA, containing the entire coding region, was placed between the SV40 early promotor and polyadenylation signals in the EBV-based vector. Both wild-type MCAD cDNA and cDNA containing the prevalent disease-causing mutation A to G at position 985 of the MCAD cDNA were tested. In transfected COS-7 cells, the steady state amount of mutant MCAD protein was consistently lower than the amount of wild-type human enzyme. The enzyme activity in extracts from cells harbouring the wild-type MCAD cDNA was dramatically higher than in the controls (harbouring the vector without the MCAD gene) while only a slightly higher activity was measured with the mutant MCAD. The mutant MCAD present behaves like wild-type MCAD with respect to solubility, subcellular location, mature protein size and tetrameric structure. In immunoblot comparisons, the MCAD protein was present in normal fibroblasts, but essentially undetectable in patient fibroblasts homozygous for the prevalent mutation. We suggest that the MCAD protein carrying this mutation has an impaired ability to form correct tetramers, leading to instability and subsequent degradation of the enzyme. This finding is discussed in relation to the results from expression of human MCAD in Escherichia coli, where preliminary results show that production of mutant MCAD leads to the formation of aggregates.  相似文献   

9.
Protein farnesyltransferase catalyzes the lipid modification of protein substrates containing Met, Ser, Gln, or Ala at their C-terminus. A closely related enzyme, protein geranylgeranyltransferase type I, carries out a similar modification of protein substrates containing a C-terminal Leu residue. Analysis of a mutant of protein farnesyltransferase containing a Tyr-to-Leu substitution at position 361 in the beta subunit led to the conclusion that the side chain of this Tyr residue played a major role in recognition of the protein substrates. However, no interactions have been observed between this Tyr residue and peptide substrates in the crystal structures of protein farnesyltransferase. In an attempt to reconcile these apparently conflicting data, a thorough kinetic characterization of the Y361L variant of mammalian protein farnesyltransferase was performed. Direct binding measurements for the Y361L variant yielded peptide substrate binding that was actually some 40-fold tighter than that with the wild-type enzyme. In contrast, binding of the peptide substrate for protein geranylgeranyltransferase type I was very weak. The basis for the discrepancy was uncovered in a pre-steady-state kinetic analysis, which revealed that the Y361L variant catalyzed farnesylation of a normal peptide substrate at a rate similar to that of the wild-type enzyme in a single turnover, but that subsequent turnover was prevented. These and additional studies revealed that the Y361L variant does not "switch" protein substrate specificity as concluded from steady-state parameters; rather, this variant exhibits severely impaired product dissociation with its normal substrate, a situation resulting in a greatly compromised steady-state activity.  相似文献   

10.
Ninety percent of variant medium-chain acyl-CoA dehydrogenase (MCAD) alleles in patients with MCAD deficiency carry a 985 A-->G transition which causes glutamate substitution for lysine 329 in precursor (p) MCAD (K-304 in mature MCAD). We have used site-directed mutagenesis to produce three variant cDNAs encoding variant pMCAD with glutamate (Kp329E2), aspartate (Kp329D), or arginine (Kp329R) substitution for Kp329. We carried out in vitro expression of cDNAs, and incubated the translation products with isolated rat liver mitochondria. Kp329E was imported into mitochondria and processed into the mature subunit as efficiently as wild-type. Gel filtration analysis of the mitochondria revealed that at 10 min after import, markedly more K304E eluted as a monomer than did wild-type, and the amount of K304E tetramer formed was distinctly less than wild-type at any point up to 60 min after import, indicating that the assembly of K304E is defective. After further incubation, K304E decayed more rapidly than did wild-type, indicating a reduced stability. In similar studies, K304R behaved like the wild-type, while K304D closely resembled K304E, indicating that the presence of a basic residue at 304 is essential for tetramer formation and intramitochondrial stability of mature MCAD.  相似文献   

11.
Benzyl isothiocyanate (BITC), present in cruciferous vegetables, is an efficient substrate of human glutathione S-transferase P1-1 (hGST P1-1). BITC also acts as an affinity label of hGST P1-1 in the absence of glutathione, yielding an enzyme inactive toward BITC as substrate. As monitored by using BITC as substrate, the dependence of k of inactivation (K(I)) of hGST P1-1 on [BITC] is hyperbolic, with K(I) = 66 +/- 7 microM. The enzyme incorporates 2 mol of BITC/mol of enzyme subunit upon complete inactivation. S-Methylglutathione and 8-anilino-1-naphthalene sulfonate (ANS) each yield partial protection against inactivation and decrease reagent incorporation, whereas S-(N-benzylthiocarbamoyl)glutathione or S-methylglutathione + ANS protects completely. Mapping of proteolytic digests of modified enzyme by using mass spectrometry reveals that Tyr(103) and Cys(47) are modified equally. S-Methylglutathione reduces modification of Cys(47), indicating this residue is at/near the glutathione binding region, whereas ANS decreases modification of Tyr(103), suggesting this residue is at/near the BITC substrate site, which is also near the binding site of ANS. The Y103F and Y103S mutant enzymes were generated, expressed, and purified. Both mutants handle substrate 1-chloro-2,4-dinitrobenzene normally; however, Y103S exhibits a 30-fold increase in K(m) for BITC and binds ANS poorly, whereas Y103F has a normal K(m) for BITC and K(d) for ANS. These results indicate that an aromatic residue at position 103 is essential for the binding of BITC and ANS. This study provides evidence for the existence of a novel xenobiotic substrate site in hGST P1-1, which can be occupied by benzyl isothiocyanate and is distinct from that of monobromobimane and 1-chloro-2,4 dinitrobenzene.  相似文献   

12.
We have employed a new pseudosubstrate, beta-(2-furyl)propionyl coenzyme A (FPCoA), to study the functional properties of two enzymes, fatty acyl-CoA dehydrogenase from porcine liver and fatty acyl-CoA oxidase from Candida tropicalis, involved in the oxidation of fatty acids. Previous studies from our laboratory have shown that the dehydrogenase exhibits oxidase activity at the rate of dissociation of the product charge-transfer complex. This raises the question of the difference in functionality between these two flavoproteins. To investigate these differences, we have compared the pH dependence of product formation, the isotope effects using tetradeuterio-FPCoA, and the spectral properties and chemical reactivity of the product charge-transfer complexes formed with the two enzymes. The pH dependencies of the reaction of FPCoA with electron-transfer flavoprotein (ETF) for the dehydrogenase and of the reaction of FPCoA with O2 for the oxidase are quite similar. Both reactions proceed more rapidly at basic pH values while substrate binds more tightly at acidic pH values. These data for both enzymes are consistent with a mechanism in which enzyme is involved in protonation of the carbonyl group of substrate followed by base-catalyzed removal of the C-2 proton from substrate. The C-2 anion of substrate may then serve as the active species in reduction of enzyme-bound flavin. The deuterium isotope effects for both enzyme systems are primary across the entire pH range, assuring that the chemically important step of substrate oxidation is rate limiting in these steady-state kinetic experiments. The two enzymes differ in the chemical reactivity of their product charge-transfer complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Some starch-degrading enzymes accommodate carbohydrates at sites situated at a certain distance from the active site. In the crystal structure of barley alpha-amylase 1, oligosaccharide is thus bound to the 'sugar tongs' site. This site on the non-catalytic domain C in the C-terminal part of the molecule contains a key residue, Tyr380, which has numerous contacts with the oligosaccharide. The mutant enzymes Y380A and Y380M failed to bind to beta-cyclodextrin-Sepharose, a starch-mimic resin used for alpha-amylase affinity purification. The K(d) for beta-cyclodextrin binding to Y380A and Y380M was 1.4 mm compared to 0.20-0.25 mm for the wild-type, S378P and S378T enzymes. The substitution in the S378P enzyme mimics Pro376 in the barley alpha-amylase 2 isozyme, which in spite of its conserved Tyr378 did not bind oligosaccharide at the 'sugar tongs' in the structure. Crystal structures of both wild-type and S378P enzymes, but not the Y380A enzyme, showed binding of the pseudotetrasaccharide acarbose at the 'sugar tongs' site. The 'sugar tongs' site also contributed importantly to the adsorption to starch granules, as Kd = 0.47 mg.mL(-1) for the wild-type enzyme increased to 5.9 mg.mL(-1) for Y380A, which moreover catalyzed the release of soluble oligosaccharides from starch granules with only 10% of the wild-type activity. beta-cyclodextrin both inhibited binding to and suppressed activity on starch granules for wild-type and S378P enzymes, but did not affect these properties of Y380A, reflecting the functional role of Tyr380. In addition, the Y380A enzyme hydrolyzed amylose with reduced multiple attack, emphasizing that the 'sugar tongs' participates in multivalent binding of polysaccharide substrates.  相似文献   

14.
Potential of mean force calculations have been performed on the wild-type medium-chain acyl-CoA dehydrogenase (MCAD) and two of its mutant forms. Initial simulation and analysis of the active site of the enzyme reveal that an arginine residue (Arg256), conserved in the substrate-binding domain of this group of enzymes, exists in two alternate conformations, only one of which makes the enzyme active. This active conformation was used in subsequent computations of the enzymatic reactions. It is known that the catalytic alpha,beta-dehydrogenation of fatty acyl-CoAs consists of two C-H bond dissociation processes: a proton abstraction and a hydride transfer. Energy profiles of the two reaction steps in the wild-type MCAD demonstrate that the reaction proceeds by a stepwise mechanism with a transient species. The activation barriers of the two steps differ by only approximately 2 kcal/mol, indicating that both may contribute to the rate-limiting process. Thus this may be a stepwise dissociation mechanism whose relative barriers can be tuned by suitable alterations of the substrate and/or enzyme. Analysis of the structures along the reaction path reveals that Arg256 plays a key role in maintaining the reaction center hydrogen-bonding network involving the thioester carbonyl group, which stabilizes transition states as well as the intervening transient species. Mutation of this arginine residue to glutamine increases the activation barrier of the hydride transfer reaction by approximately 5 kcal/mol, and the present simulations predict a substantial loss of catalytic activity for this mutant. Structural analysis of this mutant reveals that the orientation of the thioester moiety of the substrate has been changed significantly as compared to that in the wild-type enzyme. In contrast, simulation of the active site of the Thr168Ala mutant shows no significant change in the relative orientation of the substrate and the cofactor in the active site; as a result, this mutation has very little effect on the overall reaction barrier, and this is consistent with the experimental data. This study demonstrates that significant insights into the catalytic mechanism can be obtained from simulation studies, and the results can be used to design novel mechanistic probes for the enzyme.  相似文献   

15.
The coordinated activities of chaperones and proteases that supervise protein folding and degradation are important factors for deciding the fate of proteins whose folding is impaired by missense variations. We have studied the role of Lon and ClpXP proteases in handling of wild-type and a folding-impaired disease-associated variant (R28C) of the mitochondrial enzyme medium-chain acyl-CoA dehydrogenase (MCAD). Using an Escherichia coli model system, we co-overexpressed the MCAD variants and the respective proteases at two conditions: at 31 degrees C where R28C MCAD protein folds partially and at 37 degrees C where it misfolds and aggregates. Co-overexpression of Lon protease considerably accelerated the degradation rate of a pool of R28C variant MCAD synthesised during a 30min pulse and counteracted accumulation of aggregates at 37 degrees C, whereas increasing the amounts of ClpXP protease had no clear effect. Co-overexpression of either Lon or ClpXP protease markedly decreased the steady state levels of both wild-type and R28C mutant MCAD at 37 degrees C but not at 31 degrees C. Our results suggest that Lon is more efficient than ClpXP in elimination of non-native MCAD protein conformations, and accordingly, that Lon can recognise a broader spectrum of MCAD protein conformations.  相似文献   

16.
Branching enzyme belongs to the alpha-amylase family, which includes enzymes that catalyze hydrolysis or transglycosylation at alpha-(1,4)- or alpha-(1,6)-glucosidic linkages. In the alpha-amylase family, four highly conserved regions are proposed to make up the active site. From amino acid sequence analysis a tyrosine residue is completely conserved in the alpha-amylase family. In Escherichia coli branching enzyme, this residue (Y300) is located prior to the conserved region 1. Site-directed mutagenesis of the Y300 residue in E. coli branching enzyme was used in order to study its possible function in branching enzymes. Replacement of Y300 with Ala, Asp, Leu, Ser, and Trp resulted in mutant enzymes with less than 1% of wild-type activity. A Y300F substitution retained 25% of wild-type activity. Kinetic analysis of Y300F showed no effect on the Km value. The heat stability of Y300F was analyzed, and this was lowered significantly compared to that of the wild-type enzyme. Y300F also showed lower relative activity at elevated temperatures compared to wild-type. Thus, these results show that Tyr residue 300 in E. coli branching enzyme is important for activity and thermostability of the enzyme.  相似文献   

17.
Short chain acyl-CoA dehydrogenase (SCAD) is a homotetrameric flavoenzyme that catalyzes the first intramitochondrial step in the beta-oxidation of fatty acids. Two polymorphisms in the coding region of the SCAD gene, 511C>T (R147W) and 625G>A (G185S), have been shown to be associated with an increased level of ethylmalonic acid excretion in urine, a clinical characteristic of SCAD deficiency. To characterize the biochemical consequences of these variations, in vitro site-directed mutagenesis and prokaryotic expression were used to produce the corresponding SCAD variant proteins. Both variant proteins were unstable when produced in Escherichia coli, but could be rescued and subsequently purified by coexpressing them with the bacterial chaperonin GroEL/ES. The k(cat)/K(m) values of the green wild-type, R147W, and G185S SCAD enzymes coexpressed with GroEL/ES were 33, 30, and 10 microM(-)(1) s(-)(1), respectively. There were minimal differences in the kinetic parameters measured for the green, degreened, and wild-type enzymes coexpressed with GroEL/ES, and the R147W variant when butyryl-CoA was used as a substrate. The catalytic efficiency of the G185S variant enzyme, however, was reduced compared to that of the wild-type enzyme. The thermal and guanidine HCl stability of the purified enzymes as determined by fluorescence, far-UV CD spectroscopy, and incubation-induced rest activity showed the following order of relative stability: wild-type enzyme > R147W > G185S. Near-UV CD spectroscopy indicated that these impairments are caused by decreased flexibility in the tertiary conformation of the two mutant enzymes. The common SCAD polymorphisms may lead to clinically relevant alterations in enzyme function.  相似文献   

18.
Two distinct genes encode the 93% homologous type 1 (placenta, peripheral tissues) and type 2 (adrenals, gonads) 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD/isomerase) in humans. Mutagenesis studies using the type 1 enzyme have produced the Y154F and K158Q mutant enzymes in the Y(154)-P-H(156)-S-K(158) motif as well as the Y269S and K273Q mutants from a second motif, Y(269)-T-L-S-K(273), both of which are present in the primary structure of the human type 1 3beta-HSD/isomerase. In addition, the H156Y mutant of the type 1 enzyme has created a chimera of the type 2 enzyme motif (Y(154)-P-Y(156)-S-K(158)) in the type 1 enzyme. The mutant and wild-type enzymes have been expressed and purified. The K(m) value of dehydroepiandrosterone is 13-fold greater, and the maximal turnover rate (K(cat)) is 2-fold greater for wild-type 2 3beta-HSD compared with the wild-type 1 3beta-HSD activity. The H156Y mutant of the type 1 enzyme has substrate kinetic constants for 3beta-HSD activity that are very similar to those of the wild-type 2 enzyme. Dixon analysis shows that epostane inhibits the 3beta-HSD activity of the wild-type 1 enzyme with 14-17-fold greater affinity compared with the wild-type 2 and H156Y enzymes. The Y154F and K158Q mutants exhibit no 3beta-HSD activity, have substantial isomerase activity, and utilize substrate with K(m) values similar to those of wild-type 1 isomerase. The Y269S and K273Q mutants have low, pH-dependent 3beta-HSD activity, exhibit only 5% of the maximal isomerase activity, and utilize the isomerase substrate very poorly. From these studies, a structural basis for the profound differences in the substrate and inhibition kinetics of the wild-type 1 and 2 3beta-HSD, plus a catalytic role for the Tyr(154) and Lys(158) residues in the 3beta-HSD reaction have been identified. These advances in our understanding of the structure/function of human type 1 and 2 3beta-HSD/isomerase may lead to the design of selective inhibitors of the type 1 enzyme not only in placenta to control the onset of labor but also in hormone-sensitive breast, prostate, and choriocarcinoma tumors to slow their growth.  相似文献   

19.
The conjoint substitution of three active-site residues in aspartate aminotransferase (AspAT) of Escherichia coli (Y225R/R292K/R386A) increases the ratio of L-aspartate beta-decarboxylase activity to transaminase activity >25 million-fold. This result was achieved by combining an arginine shift mutation (Y225R/R386A) with a conservative substitution of a substrate-binding residue (R292K). In the wild-type enzyme, Arg(386) interacts with the alpha-carboxylate group of the substrate and is one of the four residues that are invariant in all aminotransferases; Tyr(225) is in its vicinity, forming a hydrogen bond with O-3' of the cofactor; and Arg(292) interacts with the distal carboxylate group of the substrate. In the triple-mutant enzyme, k(cat)' for beta-decarboxylation of L-aspartate was 0.08 s(-1), whereas k(cat)' for transamination was decreased to 0.01 s(-1). AspAT was thus converted into an L-aspartate beta-decarboxylase that catalyzes transamination as a side reaction. The major pathway of beta-decarboxylation directly produces L-alanine without intermediary formation of pyruvate. The various single- or double-mutant AspATs corresponding to the triple-mutant enzyme showed, with the exception of AspAT Y225R/R386A, no measurable or only very low beta-decarboxylase activity. The arginine shift mutation Y225R/R386A elicits beta-decarboxylase activity, whereas the R292K substitution suppresses transaminase activity. The reaction specificity of the triple-mutant enzyme is thus achieved in the same way as that of wild-type pyridoxal 5'-phosphate-dependent enzymes in general and possibly of many other enzymes, i.e. by accelerating the specific reaction and suppressing potential side reactions.  相似文献   

20.
Rat peroxisomal acyl-CoA oxidase I is a key enzyme for the beta-oxidation of fatty acids, and the deficiency of this enzyme in patients has been previously reported. We cloned the gene of rat peroxisomal acyl-CoA oxidase I into a bacterial expression vector pLM1 with six continuous histidine codons attached to the 5' end of the gene. The cloned gene was overexpressed in Escherichia coli and the soluble protein was purified with a nickel HiTrap chelating metal-affinity column in 90% yield to apparent homogeneity. The specific activity of the purified His-tagged rat peroxisomal acyl-CoA oxidase I was 1.5 micromol/min/mg. It has been proposed that Glu421 is a catalytic residue responsible for deprotonation of alpha-proton of acyl-CoA substrate. We constructed four mutant expression plasmids of the enzyme, pACO(E421D), pACO(E421A), pACO(E421Q), and pACO(E421G) using site-directed mutagenesis. Mutant proteins were overexpressed in E. coli and purified with a nickel metal-affinity column. Kinetic studies of wild-type and mutant proteins were carried out, and the result confirmed that Glu421 is a catalytic residue of rat peroxisomal acyl-CoA oxidase I. Our overexpression in E. coli and one-step purification of the highly active N-terminal His-tagged rat peroxisomal acyl-CoA oxidase I greatly facilitated our further investigation of this enzyme, and our result from site-directed mutagenesis increased our understanding of the mechanism for the reaction catalyzed by peroxisomal acyl-CoA oxidase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号