首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The organization of microtubule arrays in the plant cell cortex involves interactions with the plasma membrane, presumably through protein bridges. We have used immunochemistry and monoclonal antibody 6G5 against a candidate bridge protein, a 90-kD tubulin binding protein (p90) from tobacco BY-2 membranes, to characterize the protein and isolate the corresponding gene. Screening an Arabidopsis cDNA expression library with the antibody 6G5 produced a partial clone encoding phospholipase D (PLD), and a full-length gene was obtained by sequencing a corresponding expressed sequence tag clone. The predicted protein of 857 amino acids contains the active sites of a phospholipid-metabolizing enzyme and a Ca(2+)-dependent lipid binding domain and is identical to Arabidopsis PLD delta. Two amino acid sequences obtained by Edman degradation of the tobacco p90 are identical to corresponding segments of a PLD sequence from tobacco. Moreover, immunoprecipitation using the antibody 6G5 and tobacco BY-2 protein extracts gave significant PLD activity, and PLD activity of tobacco BY-2 membrane proteins was enriched 6.7-fold by tubulin-affinity chromatography. In a cosedimentation assay, p90 bound and decorated microtubules. In immunofluorescence microscopy of intact tobacco BY-2 cells or lysed protoplasts, p90 colocalized with cortical microtubules, and taxol-induced microtubule bundling was accompanied by corresponding reorganization of p90. Labeling of p90 remained along the plasma membrane when microtubules were depolymerized, although detergent extraction abolished the labeling. Therefore, p90 is a specialized PLD that associates with membranes and microtubules, possibly conveying hormonal and environmental signals to the microtubule cytoskeleton.  相似文献   

2.
A microtubule cross-bridging factor was isolated from erythrocytes of the toad, Bufo marinus. Erythrocytes were lysed and their cytoskeletons disassembled by sonication and high salt extraction. The solubilized proteins were recovered and fractionated using Sephadex G-200 column chromatography. The protein fractions from the column were analysed by SDS-PAGE and pooled into three groups: high molecular weight (HMW) proteins that eluted from the column in the void volume and had a protein composition that included HMW polypeptides; intermediate MW proteins that were shown by SDS-PAGE to contain polypeptides smaller than 120,000 D; and low MW (LMW) proteins that contained polypeptides smaller than 70,000 D. Each group was further fractionated by phosphocellulose (PC) chromatography. The flow-through was recovered, and bound proteins were then eluted by a step gradient of salt (0.2, 0.4, 0.6 and 0.8 M KCl). To assay for microtubule cross-bridging activity, column fractions were incubated with taxol-stabilized microtubules, formed from PC-purified brain tubulin (PC microtubules). Negatively stained samples were examined in the electron microscope for the reconstitution of microtubule bundles with interconnecting cross-bridges. The HMW protein fraction from the G-200 column contained the cross-bridging factor. When these proteins were further fractionated by PC chromatography only the fraction eluted by 0.2 M KCl induced the formation of microtubule bundles with cross-bridges. No other protein fraction isolated by the described method revealed cross-bridges between microtubules in vitro.  相似文献   

3.
The organization and function of microtubules in plant cells are important in many developmental stages. Connections between microtubules and the endomembrane system of plant cells have been discovered by microscopy, but the molecular characteristics of these relationships are mostly unknown except for a few cases. Using two antibodies raised against microtubule-associated proteins (MAPs) from maize, we have identified two polypeptides that share properties of the MAP family in the pollen tube of Nicotiana tabacum. The two polypeptides (with an apparent Mr of 161 and 90 kDa) bind efficiently to animal and plant microtubules and are found in association with the cellular membranes of the pollen tube, from which they can be solubilized with a zwitterionic detergent. One of these proteins has been purified and shown to promote the assembly of tubulin and, to a lesser extent, the bundling of microtubules. Subcellular fractionation indicated that the two proteins are associated with the plasma membrane compartment. The two proteins are found to co-localize in situ with cortical microtubules in the vegetative cytoplasm of tobacco pollen tubes; co-localization is also evident in the generative cell. According to these data, both the 161 and 90 kDa polypeptides are likely to mediate the interactions between the plasma membrane and microtubules in pollen tubes. In addition, functional data indicate that these MAP-like proteins take part in the process of microtubule assembly and reorganization occurring during cell growth. The evidence that both proteins associate with different cellular compartments also suggests a broad-spectrum role in mediating the dynamic relationships between microtubules and plant cell membranes.  相似文献   

4.
The association of membrane-bounded cell organelles to microtubules is crucial for determination of their shape, intracellular localization and translocation. We have shown previously the high affinity binding of peroxisomes to microtubules which appears to be of static nature as in vivo studies indicate that only a few peroxisomes move along the microtubular tracks. In order to characterize the interactions of peroxisomes with microtubules, we have developed a semiquantitative in vitro binding assay, which is based on the association of highly purified rat liver peroxisomes to microtubules coated onto microtiterplates. The binding was visualized by differential interference contrast and immunofluorescence using a confocal laser scanning microscope. The binding was concentration dependent and saturable, being affected by time, temperature, and pH. Addition of ATP or the motor proteins kinesin and dynein increased the binding capacity, while ATP-depletion or microtubule associated proteins (MAPs) decreased it. KCl treatment of peroxisomes reduced the binding, which was restored by dialyzed KCl-stripping eluate as well as by rat liver cytosol. The reconstituting effect of cytosol was abolished by its pretreatment with proteases or N-ethylmaleimide. Moreover, the treatment of peroxisomes with proteases or N-ethylmaleimide reduced their binding, which was not reversed by cytosol. These results suggest the involvement of a peroxisomal membrane protein and cytosolic factor(s) in the binding of peroxisomes to microtubules. This notion is supported by the observation that distinct subfractions of dialyzed KCl-stripping eluate obtained by gel chromatography augmented the binding. Those subfractions, as well as purified peroxisome fractions, exhibited strong immunoreactivity with an antibody to cytoplasmic linker protein (CLIP)-115, revealing a 70-kDa polypeptide. Moreover, immunodepletion of KCl-stripping eluate and its subfractions with an antibody to the conserved microtubule binding domain of CLIPs, abolished their promoting effect on the binding, thus suggesting the involvement of a CLIP-related protein in the binding of peroxisomes to microtubules.  相似文献   

5.
Cortical microtubule arrays are highly organized networks involved in directing cellulose microfibril deposition within the cell wall. Their organization results from complex interactions between individual microtubules and microtubule-associated proteins. The precise details of these interactions are often not evident using optical microscopy. Using high-resolution scanning electron microscopy, we analyzed extensive regions of cortical arrays and identified two spatially discrete microtubule subpopulations that exhibited different stabilities. Microtubules that lay adjacent to the plasma membrane were often bundled and more stable than the randomly aligned, discordant microtubules that lay deeper in the cytoplasm. Immunolabeling revealed katanin at microtubule ends, on curves, or at sites along microtubules in line with neighboring microtubule ends. End binding 1 protein also localized along microtubules, at microtubule ends or junctions between microtubules, and on the plasma membrane in direct line with microtubule ends. We show fine bands in vivo that traverse and may encircle microtubules. Comparing confocal and electron microscope images of fluorescently tagged arrays, we demonstrate that optical images are misleading, highlighting the fundamental importance of studying cortical microtubule arrays at high resolution.  相似文献   

6.
The cell body of Trypanosomatidae is enclosed in densely packed, crosslinked, subpellicular microtubules closely underlying the plasma membrane. We isolated the subpellicular microtubules from bloodstream Trypanosoma brucei parasites by use of a zwitterion detergent. These cold stable structures were solubilized by a high ionic strength salt solution, and the soluble proteins that contained tubulin along with several other proteins were further fractionated by Mono S cation exchange column chromatography. Two distinct peaks were eluted containing one protein each, which had an apparent molecular weight of 52 kDa and 53 kDa. (Mr was determined by SDS-gel electrophoresis). Only the 52 kDa protein showed specific tubulin binding properties, which were demonstrated by exposure of nitrocellulose-bound trypanosome proteins to brain tubulin. When this protein was added to brain tubulin in the presence of taxol and GTP, microtubule bundles were formed with regular crosslinks between the parallel closely packed microtubules. The crosslinks were about 7.2 nm apart (center to center). Under the same conditions, but with the 53 kDA protein or without trypanosome derived proteins, brain tubulin polymerized to single microtubules. It is thus suggested that the unique structural organization of the subpellicular microtubules is dictated by specific parasite proteins and is not an inherent property of the polymerizing tubulin. The in vitro reconstituted microtubule bundles are strikingly similar to the subpellicular microtubule network of the parasite.  相似文献   

7.
The involvement of high molecular weight microtubule-associated proteins (HMW-MAPs) in the process of taxol-induced microtubule bundling has been studied using immunofluorescence and electron microscopy. Immunofluorescence microscopy shows that HMW-MAPs are released from microtubules in granulosa cells which have been extracted in a Triton X-100 microtubule-stabilizing buffer (T-MTSB), unless the cells are pretreated with taxol. 1.0 microM taxol treatment for 48 h results in microtubule bundle formation and the retention of HMW-MAPs in these cells upon extraction with T-MTSB. Electron microscopy demonstrates that microtubules in control cytoskeletons are devoid of surface structures whereas the microtubules in taxol-treated cytoskeletons are decorated by globular particles of a mean diameter of 19.5 nm. The assembly of 3 X cycled whole microtubule protein (tubulin plus associated proteins) in vitro in the presence of 1.0 microM taxol, results in the formation of closely packed microtubules decorated with irregularly spaced globular particles, similar in size to those observed in cytoskeletons of taxol-treated granulosa cells. Microtubules assembled in vitro in the absence of taxol display prominent filamentous extensions from the microtubule surface and center-to-center spacings greater than that observed for microtubules assembled in the presence of taxol. Brain microtubule protein was purified into 6 s and HMW-MAP-enriched fractions, and the effects of taxol on the assembly and morphology of these fractions, separately or in combination, were examined. Microtubules assembled from 6 s tubulin alone or 6 s tubulin plus taxol (without HMW-MAPs) were short, free structures whereas those formed in the presence of taxol from 6 s tubulin and a HMW-MAP-enriched fraction were extensively crosslinked into aggregates. These data suggest that taxol induces microtubule bundling by stabilizing the association of HMW-MAPs with the microtubule surface which promotes lateral aggregation.  相似文献   

8.
The high molecular weight microtubule-associated proteins MAP 1 and MAP 2 are major components of brain cytosol and can be readily identified using polyacrylamide gel electrophoresis on the basis of heat-stability and co-sedimentation with microtubules. An examination of synaptosomal cytosol, synaptic plasma membrane and postsynaptic density fractions showed that MAP 2 is absent from these fractions and thus from both pre- and postsynaptic sites. All of the fractions contained polypeptides that comigrated with MAP 1 and a MAP 1 like polypeptide was identified in a microtubule preparation from synaptosomal cytosol. The absence of MAP 2 from synaptosomal cytosol was confirmed by immunoblotting using an antibody directed against MAP 2. Immunocytochemistry using this antibody showed that MAP 2 was present in cell bodies and dendrites but absent from axons.  相似文献   

9.
Despite the absence of a conspicuous microtubule-organizing centre, microtubules in plant cells at interphase are present in the cell cortex as a well oriented array. A recent report suggests that microtubule nucleation sites for the array are capable of associating with and dissociating from the cortex. Here, we show that nucleation requires extant cortical microtubules, onto which cytosolic gamma-tubulin is recruited. In both living cells and the cell-free system, microtubules are nucleated as branches on the extant cortical microtubules. The branch points contain gamma-tubulin, which is abundant in the cytoplasm, and microtubule nucleation in the cell-free system is prevented by inhibiting gamma-tubulin function with a specific antibody. When isolated plasma membrane with microtubules is exposed to purified neuro-tubulin, no microtubules are nucleated. However, when the membrane is exposed to a cytosolic extract, gamma-tubulin binds microtubules on the membrane, and after a subsequent incubation in neuro-tubulin, microtubules are nucleated on the pre-existing microtubules. We propose that a cytoplasmic gamma-tubulin complex shuttles between the cytoplasm and the side of a cortical microtubule, and has nucleation activity only when bound to the microtubule.  相似文献   

10.
Bundles of microtubules and cross-bridges between microtubules in the bundles have been observed in phragmoplasts, but proteins responsible for forming the cross-bridges have not been identified. We isolated TMBP200, a novel microtubule bundling polypeptide with an estimated relative molecular mass of about 200,000 from telophase tobacco BY-2 cells. Ultrastructural observation of microtubules bundled by purified TMBP200 in vitro revealed that TMBP200 forms cross-bridges between microtubules. The structure of the bundles and lengths of the cross-bridges were quite similar to those observed in phragmoplasts, suggesting that TMBP200 participates in the formation of microtubule bundles in phragmoplasts. The cDNA encoding TMBP200 was cloned and the deduced amino acid sequence showed homology to a class of microtubule-associated proteins including Xenopus XMAP215, human TOGp and Arabidopsis MOR1.  相似文献   

11.
The heterotrimeric GTP-binding regulatory proteins (G proteins) play an important role in the regulation of membrane signal transduction. Recently, we identified the association of Go protein with mitotic spindles. Here we have investigated the relationship between Go protein and microtubules. We used temperature-dependent reversible assembly and taxol methods to purify microtubules from bovine brains. Goalpha and Gbeta proteins were identified in the microtubular fraction by both methods. The Goalpha subunit in the microtubular fraction could be ADP ribosylated by pertussis toxin. Co-immunoprecipitation data also revealed that Go protein can interact with microtubules. Exogenous Go protein could be incorporated into the assembled microtubular fraction, and 5 microg/ml (60 nM) of Go protein inhibited 40% of microtubule assembly. Western blot analysis of Goalpha-1 and Goalpha-2 in microtubular fractions showed that only Goalpha-1 is associated with microtubules. We conclude that the Goalpha-1betagamma proteins are associated with microtubules and may play some role in regulating the assembly and disassembly of microtubules.  相似文献   

12.
The distribution between nuclei and cytoplasm of DNA-binding proteins from growing NIL cells was studied. To obtain the subcellular fractions, cell monolayers or cells previously detached from the culture dish were treated with the non-ionic detergent Nonidet P-40. Proteins with affinity for DNA were isolated from nuclear or cytoplasmic fractions by chromatography on DNA-cellulose columns and were further analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The results show that P8, one of the major components in the 0.15 M NaCl-eluted proteins, is found predominantly in the cytoplasmic fractions, whereas P6, the other main protein peak in this eluate, is more prominent in the nuclear fraction. Among the other proteins eluted at 0.15 M NaCl from the DNA-cellulose column, P5 and P5′ are detected in both nuclear and cytoplasmic fractions. All the other proteins in the 0.15 M NaCl eluate are present almost exclusively in the cytoplasmic fraction. On the other hand, most of the proteins with higher affinity for DNA, eluted from the column at 2 M NaCl, are present in the nuclear fraction, although they are also detected in the cytoplasm in amounts similar to those observed in the nuclei.  相似文献   

13.
Summary Specimen preparation protocols that allow field emission scanning electron microscope imaging of microtubules in plant cells were developed, involving simultaneous permeabilization with saponin and stabilization of microtubules with taxol. All categories of microtubule array were observed in onion root tip cells and in tobacco BY-2 cells grown in suspension culture and synchronized to provide high frequencies of mitotic stages. Cortical arrays consist of overlapping microtubules with free ends; individual microtubules directly overlie individual microfibrils in the cell wall. Preprophase bands and spindle microtubule bundles were also imaged. Phragmoplasts revealed early stages of wall deposition in the included cell plates and features interpreted as relating to high rates of microtubule turnover at the growing margins. It was possible to combine high resolution three-dimensional imaging with immunogold labelling of microtubules. Individual gold particles were readily distinguished decorating microtubules in the preparations; the method should be vaulable for studying many features of plant cell microtubules and their associated macromolecules.Abbreviations FESEM field emission gun scanning electron microscope - MTSB microtubule stabilising buffer Dedicated to Professor Eldon H. Newcomb in recognition of his contributions to cell biology  相似文献   

14.
VP90, the capsid polyprotein precursor of human astrovirus Yuc8, is assembled into viral particles, and its processing at the carboxy terminus by cellular caspases, to yield VP70, has been correlated with the cell release of the virus. Here, we characterized the effect of the VP90-VP70 processing on the properties of these proteins, as well as on their intracellular distribution. VP90 was found in membrane-enriched fractions (mVP90), as well as in fractions enriched in cytosolic proteins (cVP90), while VP70 was found exclusively in the latter fractions. Upon trypsin activation, infectivity was detected in all VP90-containing fractions, confirming that both mVP90 and cVP90 are able to assemble into particles; however, the two forms of VP90 showed differential sensitivities to trypsin, especially at their carboxy termini, which in the case of mVP90 was shown to remain membrane associated after protease digestion. Structural protein oligomers were detected in purified VP70-containing viruses, as well as in membrane-enriched fractions, but they were less evident in cytosolic fractions. Ultrastructural studies of infected cells revealed different types of viral particles, some of which appeared to be associated with membranes. By immunoelectron microscopy, structural proteins were shown to form virus particles in clusters and to associate with the edges of vesicles induced during infection, which also appear to contain subviral particles inside. Nonstructural proteins and viral RNA colocalized with mVP90, but not with cVP90, suggesting that mVP90 might represent the form of the protein that is initially assembled into particles, at the sites where the virus genome is being replicated.  相似文献   

15.
Rab proteins are geranylgeranylated on their carboxyl terminal cysteine motifs by geranylgeranyltransferase II (GGTase). Rab escort protein (REP) is required to present Rab proteins to GGTase. REP may remain bound to newly isoprenylated Rab proteins and present them to their target membrane. Other studies have shown that Rab proteins cycle between the membrane and cytosolic compartments and that cytosolic Rab proteins are complexed with rab-GDI. In the present study, we examined the expression and localization of REP isoforms in parotid acinar cells. Although both REP isoforms, REP-1 and REP-2, were detected in parotid cytosol, REP-2 was the predominant isoform. Subcellular fractionation revealed that approximately 42% of cellular REP-2 is membrane-associated. REP-2 was partially removed from parotid membranes with 1 M NaCl or Na(2)CO(3), indicating that REP-2 is a peripheral membrane protein. Membrane-associated REP-2 did not colocalize with Rab3D on secretory granule membranes. However, density gradient centrifugation revealed that membrane-associated REP-2 and Rab3D colocalize on low- and high-density membrane fractions in parotid acinar cells. Isoproterenol, an agent which induces amylase release from parotid glands, caused a shift in both REP-2 and Rab3D to less dense membrane fractions. When acinar cell cytosol was fractionated by gel filtration chromatography, Rab3D eluted exclusively with REP, not rab-GDI. In contrast, Rab1B and Rab5 eluted with both REP and Rab-GDI. Colocalization of Rab3D and REP-2 on acinar cell membranes suggests that REP-2 plays a role in delivering Rab3D to parotid membranes and may regulate guanine nucleotide binding to membrane-associated Rab3D. In addition, unlike other Rab proteins, cytosolic Rab3D appears to associate exclusively with REP, not rab-GDI in parotid acinar cells.  相似文献   

16.
Extraction of doublet microtubules from the sperm flagella of the sea urchin Strongylocentrotus purpuratus with sarkosyl (0.5%)-urea (2.5 M) yields a highly pure preparation of "tektin" filaments that we have previously shown to resemble intermediate filament proteins. They form filaments 2-3 nm in diameter as seen by negative stain electron microscopy and are composed of approximately equal amounts of three polypeptide bands with apparent molecular weights of 47,000, 51,000, and 55,000, as determined by SDS PAGE. We prepared antibodies to this set of proteins to localize them in the doublet microtubules of S. purpuratus and other species. Tektins and tubulin were antigenically distinct when tested by immunoblotting with affinity-purified antitektin and antitubulin antibodies. Fixed sperm or axonemes from several different species of sea urchin showed immunofluorescent staining with antitektin antibodies. We also used antibodies coupled to gold spheres to localize the proteins by electron microscopy. Whereas a monoclonal antitubulin (Kilmartin, J.V., B. Wright, and C. Milstein, 1982, J. Cell Biol. 93:576-582) decorates intact microtubules along their lengths, antitektins labeled only the ends of intact microtubules and sarkosyl-insoluble ribbons. However, if microtubules and ribbons attached to electron microscope grids were first extracted with sarkosyl-urea, the tektin filaments that remain were decorated by antitektin antibodies throughout their length. These results suggest that tektins form integral filaments of flagellar microtubule walls, whose antigenic sites are normally masked, perhaps by the presence of tubulin around them.  相似文献   

17.
In acentriolar higher plant cells, the surface of the nucleus acts as a microtubule-organizing center, substituting for the centrosome. However, the protein factors responsible for this microtubule organization are unknown. The nuclear surfaces of cultured tobacco BY-2 cells possess particles that generate microtubules. We attempted to isolate the proteins in these particles to determine their role in microtubule organization. When incubated with plant or mammalian tubulin, some, but not all, of the isolated nuclei generated abundant microtubules radially from their surfaces. The substance to induce the formation of radial microtubules was confirmed by SDS-PAGE to be a protein with apparent molecular mass of 38 kDa. Partial analysis of the amino acid sequences of the peptide fragments suggested it was a histone H1-related protein. Cloning and cDNA sequence analysis confirmed this and revealed that when the recombinant protein was incubated with tubulin, it could organize microtubules as well as the 38-kDa protein. Histone H1 and tubulin formed complexes immediately, even on ice, and then clusters of these structures were formed. These clusters generated radial microtubules. This microtubule-organizing property was confined to histone H1; all other core histones failed to act as organizers. On immunoblot analysis, rabbit antibodies raised against the 38-kDa protein cross-reacted with histone H1 proteins from tobacco BY-2 cells. These antibodies virtually abolished the ability of the nucleus to organize radial microtubules. Indirect immunofluorescence showed that the antigen was distributed at the nuclear plasm and particularly at nuclear periphery independently from DNA.  相似文献   

18.
Summary The arrangement of cortical microtubules in tobacco protoplasts is described using the following techniques: 1. Transmission electron microscopy (TEM) of thin sections of whole protoplasts, 2. TEM of negatively stained protoplast ghosts, and 3. Indirect immunofluorescence microscopy of protoplast ghosts. Ghosts were prepared by attaching freshly isolated protoplasts to glass coverslips or formvar/carbon-coated grids with poly-L-lysine and then bursting them either osmotically or by detergent treatment in the presence of a microtubule stabilizing buffer. Osmotic bursting of protoplasts yielded large pieces of plasma membrane with attached microtubules. These preparations proved very useful for measuring the density and length of cortical microtubules. Detergent treatment dissolved the plasma membrane and altered the distribution of cortical microtubules.  相似文献   

19.
Mitogen-activated protein kinase (MAPK) is activated by many kinds of stimuli and plays an important role in integrating signal transduction cascades. MAPK is present abundantly in brain, where we have studied its association with microtubules. Immunofluorescence of primary hippocampal neurons revealed that MAPK staining co-localized with microtubules and biochemical analyses showed that MAPK co-purified with microtubules. Approximately 4% of MAPK in cytosolic extracts was associated with microtubules, where it was associated with both tubulin and microtubule-associated proteins (MAPs) fractions. Further fractionation of MAPs suggested that a portion of MAPK is associated with MAP2. An association with MAP2 was also demonstrated by co-immunoprecipitation and in vitro binding experiments. A similar association was shown for the juvenile MAP2 isoform, MAP2C. The pool of MAPK associated with microtubules had a higher activity relative to the nonassociated pool in both brain and proliferating PC12 cells. Although MAPK was activated by nerve growth factor in PC12 cells, the activity of microtubule-associated MAPK did not further increase. These results raise the possibility that microtubule-associated MAPK operates through constitutive phosphorylation activity to regulate microtubule function in neurons.  相似文献   

20.
Tau, a microtubule-associated protein which copurifies with tubulin through successive cycles of polymerization and depolymerization, has been isolated from tubulin by phosphocellulose chromatography and purified to near homogeneity. The purified protein is seen to migrate during electrophoresis on acrylamide gels as four closely spaced bands of apparent molecular weights between 55,000 and 62,000. Specific activity for induction of microtubule formation from purified tubulin has been assayed by quantitative electron microscopy and is seen to be enhanced three- to fourfold in the purified tau when compared with the unfractionated microtubule-associated proteins. Nearly 90% of available tubulin at 1 mg/ml is found to be polymerizable into microtubules with elevated levels of tau. Moreover, the critical concentration for polymerization of the reconstituted tau + tubulin system is seen to be a function of tau concentration and may be lowered to as little as 30 μg of tubulin per ml. Under depolymerizing conditions, 50% of the tubulin at only 1 mg/ml may be driven into ring structures. A separate purification procedure for isolation of tau directly from cell extracts has been developed and data from this purification suggest that tau is present in the extract in roughly the same proportion to tubulin as is found in microtubules purified by cycles of assembly and disassembly. Tau is sufficient for both nucleation and elongation of microtubules from purified tubulin and hence the reconstituted tau + tubulin system defines a complete microtubule assembly system under standard buffer conditions. In an accompanying paper (Cleveland et al., 1977) the physical and chemical properties of tau are discussed and a model by which tau may function in microtubule assembly is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号