首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Douglas-fir (Pseudotsuga menziesii [Mirb] Franco) metallothionein (PmMT) cDNA encodes a novel cysteine- and serine-rich MT, indicating a new subtype or prototype MT from which other plant MTs may have evolved. A genomic library of Douglas-fir was screened using MT cDNA probes, and genomic sequences that mediate tissue-specific, temporal as well as inducible expression of the embryo-specific MT-gene were analyzed. The promoter region of the PmMT genomic clone (gPmMT) contained a hexameric G-box, two putative ethylene-responsive elements and an inverted repeat of a motif similar to the core metal regulatory element. Interestingly, comparison of the upstream region of Douglas-fir gPm2S1 and gPmMTa genes revealed a conserved motif, CATTATTGA, not found in any known angiosperm gene promoter. Chimeric gene constructs containing a series of deletions in the gPmMTa promoter fused to the uidA reporter gene were assayed in Douglas-fir and transgenic tobacco (Nicotiana tabacum L.). Transient-expression assays in Douglas-fir megagametophyte and zygotic embryos indicated that the sequence –190 to +88 of gPmMTa was sufficient to drive the expression of the reporter gene and that the 225-bp fragment (–677 to –453) contained sequences necessary for high-level expression. In transgenic tobacco seedlings the -glucuronidase activity was localized in the vacuolar tissue and proliferating tissue of the auxiliary buds and stem elongation zone. The gPmMTa promoter was not active in the seeds of transgenic tobacco or in the roots of seedlings up to 3 weeks old. Detailed studies of transient expression and stable transformation provided important information on evolutionary conservation as well as novel features found in the conifer promoter. This is the first report of an MT-like gene promoter from conifers.  相似文献   

4.
We report here the identification of a cis-acting region involved in light regulation of the nuclear gene (GapB) encoding the B subunit of chloroplast glyceraldehyde 3-phosphate dehydrogenase from Arabidopsis thaliana. Our results show that a 664-bp GapB promoter fragment is sufficient to confer light induction and organ-specific expression of the Escherichia coli beta-glucuronidase reporter gene (Gus) in transgenic tobacco (Nicotiana tabacum) plants. Deletion analysis indicates that the -261 to -173 upstream region of the GapB gene is essential for light induction. This region contains four direct repeats with the consensus sequence 5'-ATGAA(A/G)A-3' (Gap boxes). Deletion of all four repeats abolishes light induction completely. In addition, we have linked a 109-bp (-263 to -152) GapB upstream fragment containing the four direct repeats in two orientations to the -92 to +6 upstream sequence of the cauliflower mosaic virus 35S basal promoter. The resulting chimeric promoters are able to confer light induction and to enhance leaf-specific expression of the Gus reporter gene in transgenic tobacco plants. Based on these results we conclude that Gap boxes are essential for light regulation and organ-specific expression of the GapB gene in A. thaliana. Using gel mobility shift assays we have also identified a nuclear factor from tobacco that interacts with GapA and GapB DNA fragments containing these Gap boxes. Competition assays indicate that Gap boxes are the binding sites for this factor. Although this binding activity is present in nuclear extracts from leaves and roots of light-grown or dark-treated tobacco plants, the activity is less abundant in nuclear extracts prepared from leaves of dark-treated plants or from roots of greenhouse-grown plants. In addition, our data show that this binding factor is distinct from the GT-1 factor, which binds to Box II and Box III within the light-responsive element of the RbcS-3A gene of pea.  相似文献   

5.
6.
The regulatory activity of a 826 bp DNA fragment located upstream of the pTiBo542 TL-DNA gene 6b coding region was analysed in transgenic tobacco, using -glucuronidase (gus) as a reporter gene. The region was shown to drive organ-specific, wound- and auxin-inducible expression of the reporter, the effect being dependent on the type and concentration of auxin.  相似文献   

7.
8.
9.
A full genome analysis of differences between the gene expression in the human and chimpanzee brains revealed that the gene for transthyretin, the carrier of thyroid hormones, is differently transcribed in the cerebella of these species. A 7-kbp DNA fragment of chimpanzee was sequenced to identify possible regulatory sequences responsible for the differences in expression. One hundred and thirteen substitutions were found in the chimpanzee sequence in comparison with the human sequence. About 40% of the substitutions were revealed within the repeating elements of the genome; their location and sizes did not differ from those in the corresponding fragments of the human genome, and the nucleotide sequences had a high degree of identity. A comparison of nucleotide sequences of the transthyretin region of human, chimpanzee, and mouse genes revealed substantial differences in the distribution of G + C content along the examined fragment in the human (chimpanzee) and mouse genes and allowed us to localize three sequence tracts with a higher degree of identity in the three species. One of these tracts was located in the promoter region of the gene, and the other two probably determine the specificity of transthyretin gene expression in the liver and brain. One of the conserved tracts of the chimpanzee genome was found to have a single and a triple nucleotide substitution. The triple substitution distinguishes chimpanzees from humans and mice, which have identical sequences of this site. It is likely that these substitutions are responsible for the differences in the expression levels of the transthyretin gene in the human and chimpanzee brains.  相似文献   

10.
Functional organization of the cassava vein mosaic virus (CsVMV) promoter   总被引:6,自引:1,他引:5  
Cassava vein mosaic virus (CsVMV) is a pararetrovirus that infects cassava plants in Brazil. A promoter fragment isolated from CsVMV, comprising nucleotides -443 to +72, was previously shown to direct strong constitutive gene expression in transgenic plants. Here we report the functional architecture of the CsVMV promoter fragment. A series of promoter deletion mutants were fused to the coding sequence of uidA reporter gene and the chimeric genes were introduced into transgenic tobacco plants. Promoter activity was monitored by histochemical and quantitative assays of -glucuronidase activity (GUS). We found that the promoter fragment is made up of different regions that confer distinct tissue-specific expression of the gene. The region encompassing nucleotides -222 to -173 contains cis elements that control promoter expression in green tissues and root tips. Our results indicate that a consensus as1 element and a GATA motif located within this region are essential for promoter expression in those tissues. Expression from the CsVMV promoter in vascular elements is directed by the region encompassing nucleotides -178 to -63. Elements located between nucleotides -149 and -63 are also required to activate promoter expression in green tissues suggesting a combinatorial mode of regulation. Within the latter region, a 43 bp fragment extending from nucleotide -141 to -99 was shown to interact with a protein factor extracted from nuclei of tobacco seedlings. This fragment showed no sequence homology with other pararetrovirus promoters and hence may contain CsVMV-specific regulatory cis elements.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Trichothecene biosynthetic pathway genes are localized within a gene cluster in Fusarium sporotrichioides and require the zinc-finger containing protein, TRI6, for expression. We show here that TRI6 is able to bind within the promoter regions of nine different pathway genes and that TRI6 binding is involved in pathway gene activation. TRI6 binding occurs at three distinct sites in the TRI5 promoter, all of which contain the sequence TNAGGCCT. DNA fragments from the promoter regions of six other pathway genes containing this sequence are also substrates for TRI6 binding. Specific nucleotide changes in the TNAGGCCT sequence dramatically reduced TRI6 binding. Analysis of TRI6 binding within the TRI3 and TRI11 promoters and the TRI4-TRI6 intergenic region which do not contain the TNAGGCCT motif suggests that the minimum sequence required for TRI6 binding is YNAGGCC. Two potential TRI6 binding sites, T4A and T4B, were identified within the intergenic region for the divergently transcribed TRI4 and TRI6 genes. Alteration or deletion of the T4A site resulted in the loss of nearly all in vitro TRI6 binding and was correlated with the loss of promoter activity in vivo as measured by the expression of mutant TRI4(p)/GUS fusions. This establishes a physiological role for TRI6 binding and demonstrates that TRI6 is directly involved in the regulation of pathway gene expression. To determine if a predicted Cys2His2 zinc-finger motif at the C-terminus of TRI6 is involved in DNA binding, a C187A mutant was constructed in TRI6 using site-directed mutagenesis. The C187A mutant did not bind promoter DNA fragments, supporting the role of C187 in DNA binding. In addition, a TRI6 homologue in the distantly related macrocyclic trichothecene pathway of Myrothecium roridum (MRTRI6) was also shown to bind to the same TRI5 and TRI4 promoter fragments bound by TRI6. Together, these data confirm our previous proposal that TRI6 is an activator of trichothecene pathway gene expression and that DNA binding employs the C-terminal region of TRI6 containing three predicted Cys2His2 zinc fingers.  相似文献   

18.
19.
20.
Selective gene expression in different populations of cells of the root apex of transgenic tobacco could be evidenced by means of GUS constructs with deletions of the rolB promoter and fusions with the CaMV 35S minimal promoter. Five regulatory regions have been broadly identified in the rolB 5 non-coding region. The presence of all five domains (A to E) directs gene expression in the root cap, in the protoderm and in the different tissues within the root meristematic region: the dermatocalyptrogen, the cortex and the vascular cylinder. Deletion of domain A (–623 to –471) selectively suppresses expression in non-meristematic cells, i.e. the root cap and the protoderm. Deletion of either domain B (–341 to –306) or E (80 bp around the TATA box) causes loss of expression in all cells of the root apex: constructs C+D+E, B+C+D, B+C are inactive. Domain D (70 bp around the CAAT box) is necessary for gene expression in the dermatogen and in meristematic cells of the cortex but not in the innermost meristematic layer: construct B+C+E is active only in vascular meristematic cells. Domain C (–216 to –158) seems to have a double regulatory role as construct B+E is no longer expressed in meristematic cells of the vascular cylinder but is very active in the protoderm. Constructs allowing gene expression in meristematic cells are also inducible by auxin in leaf protoplasts, while activation of the regulatory elements necessary for gene expression in the non-meristematic cells of the root apex do not seem to depend upon the hormone. The connection between auxin induction and meristematic expression is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号