共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of Aminooxyacetate and Aminoacetonitrile on Glycolate and Ammonia Release by the Cyanobacterium Anabaena cylindrica
下载免费PDF全文

Aminooxyacetate and aminoacetonitrile cause increased excretion of glycolate by the cyanobacterium Anabaena cylindrica. Both compounds also reduce NH4-N release induced by methionine sulfoximine in non-nitrogen-fixing cultures. Changes in amino acid pool sizes together with changes in activities of some enzymes related to glycolate metabolism show that glyoxylate to glycine conversion and glycine to serine conversion are inhibited by aminooxyacetate and aminoacetonitrile, respectively. The results also verify that photorespiratory glycolate metabolism via amination of glyoxylate is operative in A. cylindrica. 相似文献
2.
Carbamoyl phosphate synthetase from the cyanobacterium Anabaenacylindrica was purified by the following procedures: ammoniumsulfate fractionation, DEAE-Toyo-pearl, Affi-gel Blue, SephacrylS-300 HR, and Mono Q column chromatography. The molecular weightof the holoenzyme was estimated to be 166,000 by gel permeationchromatography. SDS-PAGE showed that the enzyme consisted oftwo subunits with molecular weights of 130,000 and 43,000. Optimal pH of this enzyme was 7.8 in HEPES buffer. Its MgATPsaturation curve was sigmoidal, yielding a Hill coefficientof 1.9 and an apparent Km of 4.5 mM. The Km values for glutamine,NH4C1 and NaHC03 were 55 µM, 182 mM and 2.5 mM, respectively.A high concentration of K+ (100 mM) was required for maximumactivity. The enzyme was activated by ornithine, IMP, GMP, andGDP, and inhibited by UMP and UDP. Ornithine increased the affinityof the enzyme to ATP by acting as a positive allosteric effector,whereas UMP reduced it by acting as a negative allosteric effector. (Received December 24, 1996; Accepted April 10, 1997) 相似文献
3.
4.
Methionine sulfoximine (MSX), a glutamine synthetase inhibitor,suppressed the inhibitory effect of ammonia on nitrate uptakeby Anabaena cells in both the light and dark. In the light,MSX did not inhibit nitrate uptake in the absence of ammonia,but under dark conditions, MSX above 2 µM inhibited nitrateuptake. Nitrite uptake, which is not affected by ammonia ineither the light or the dark, was inhibited by MSX in the darkbut not in the light. (Received October 3, 1984; Accepted April 22, 1985) 相似文献
5.
Anabaena PCC 7119 showed higher rates of phosphate uptake whencells were under P-starvation. Phosphate uptake was energy-dependentas indicated the decrease observed when assays were performedin the dark or in the presence of inhibitors of photosyntheticelectron transport, energy transfer and adenosine triphosphataseactivity. Phosphate uptake was stimulated by Na+ both in P-sufficientcells and P-starved cells. Li+ and K+ acted as partial analoguesfor Na+. The Na+-stimulation of phosphate uptake followed Michaelis-Mentenkinetics, half-saturation (K) of phosphate uptake was reachedwith a Na+ concentration of 212 µM. The absence of Na+reduced the rates of phosphate uptake at all phosphate concentrationsassayed (120 µM). The maximum uptake rates (Vmax)decreased from 658 nmol P (mg dry wt)-1 h-1 in the presenceof Na+ to 149 nmol P (mg dry wt)-1 h-1 in the absence of Na+.The absence of Na+ did not change significantly the concentrationof phosphate required to reach half-saturation (K) (3.01 µMin the presence of Na+ vs 3.21 µM in the absence of Na+).In the presence of Na+ the rate of phosphate uptake was affectedby the pH; optimal rates were observed at pH 8. In the absenceof Na+ phosphate uptake was not affected by the pH; low rateswere observed in all cases. Monensin, an ionophore which collapsesNa+-gradients, reduced the rate of phosphate uptake in Na+-supplementedcells. These results indicated the existence of a Na+-dependentphosphate uptake in Anabaena PCC 7119. (Received September 8, 1992; Accepted November 17, 1992) 相似文献
6.
A transformant of Anabaena 7120 was made by introducing a plasmidthat includes an adenylate cyclase gene of Anabaena cylindrica.Expression of this gene was driven by the bacterial tac promoter.Transformants accumulate cAMP 170 fold higher than the concentrationin the parental strain. The transformation resulted in the fragmentationof filaments in both nitrogen-replete and nitrogen-free media.It was suggested that this fragmentation caused the inhibitionof growth under nitrogen-fixing conditions. (Received December 26, 1997; Accepted April 30, 1998) 相似文献
7.
A study was made of the effects of cadmium on the Cyanobacterium(blue-green alga) Anabaena cylindrica Lemm. as part of the paddy-fieldecosystem. A simple culture vessel has been designed, which allows periodicalmeasurement of growth (optical density) and nitrogenase activity(C2H2-C2H4 method). The influence of medium renewal was checked:the renewal of the medium maintained a higher growth rate andhigher nitrogen fixation ability. The cadmium effects were studied using six concentration levelsranging from 0 (control) to 2 parts 106 with renewedmedia (10% every day). No significant differences could be seen up to 1 part 106for nitrogenase activity and relative percentage of heterocysts(decreasing as a function of time from ±4% to ±1.5%). Inhibition of growth (OD and dry weight) was weak at 1 part106 but important at 2 parts 106; at this concentrationcadmium induced morphological and physiological effects: chlorosis,cellular malformations and destruction, and increase in heterocystfrequency (up to 7.72% ±0.19). The cadmium concentration factors were much lower than thosereported for other plants like Chlorella and water pests 相似文献
8.
Summary Blending Anabaena cylindrica cultures results in a loss of nitrogenase activity which is correlated with the breakage of the filaments at the junctions between heterocysts and vegetative cells. Oxygen inhibition of nitrogen fixation was significant only above atmospheric concentrations. Nitrogen-fixation activities in the dark were up to 50% of those observed in the light and were dependent on oxygen (10 to 20% was optimal). Nitrogenase activity was lost in about 3 h when cells were incubated aerobically in the dark. Re-exposure to light resulted in recovery of nitrogenase activity within 2 h. Blending, oxygen, or dark pre-incubation had similar effects upon cultures grown under air or nitrogen and did not inhibit light-dependent CO2 fixation. We conclude that heterocysts are the sites of nitrogenase activity and propose a model for nitrogen fixation by Anabaena cylindrica. 相似文献
9.
《Electromagnetic biology and medicine》2013,32(3):227-235
Exposure time and magnetic-pole-dependent physiological response of a cyanobacterium, Anabaena doliolumwere studied by exposing the samples to two poles [north (N) and south (S)] of a 0.3 Tesla permanent magnet for 1–6 h. Study revealed that both magnetic poles, N and S, produce different effects, depending on the length of exposure. However, physiological response of the cyanobacterium to N + S mixtures was significantly different from the response to either of the poles, N or S, suggesting a change in structural chemistry of the water or nutrient solution responsible for the magnetobiological effects. 相似文献
10.
We have studied the evolution of hydrogen by photobleached filaments of the heterocystous bluegreen alga Anabaena cylindrica. The photobleached cells became orange-yellow due to the heavy accumulation of carotenoids. We found that the yellow filaments produced much larger amounts of hydrogen than the normal, green ones, while the nitrogenase activity responsible for hydrogen evolution increased to a lesser extent. We suggest that a reversible hydrogenase activity induced in photobleached filaments is responsible for the excess amount of hydrogen. 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) inhibits the hydrogen evolution of the yellow filaments which produce much more oxygen and fix less CO2 than the green filaments. Therefore we consider the water to be a possible electron source for this hydrogenase. The low efficiency of light energy conversion (0.3%) in nitrogenase-catalyzed H2 evolution (Laczkó, 1980 Z. Pflanzenphysiol. 100, 241–245) is increased to 1.5–2% by the appearance of the reversible hydrogenase activity.Abbreviations Chl
chlorophyll
- Car
carotenoids
- Phy
phycocyanin
- DCMU
3-(3,4-dichlorophenyl)-1,1-dimethyl-urea
- PSI
photosystem I
- PSII
photosystem II 相似文献
11.
Summary Crude cell-free extracts of Anabaena cylindrica synthesized adenosine-5-phosphosulphate (AP35S) and 3-phosphoadenosine-5-phosphosulphate (PAP35S) from 35SO4
2- in the presence of Mg2+, ATP and inorganic pyrophosphatase. Maximum AP35S and PAP35S were produced at pH 7.15 and 8.05, respectively. APS kinase was detected in the supernatant of crude cell-free extracts by a spectrophotometric procedure. ATP-Sulphurylase had an absolute requirement for Mg2+ and less than 30% AP35S was formed when Mg2+ was replaced by either Mn2+ or Co2+. Nucleotide triphosphates other than ATP and 2-deoxyATP were ineffective in this reaction. Maximum enzyme activity was observed at equimolar concentrations of Mg2+ and ATP and excess of either of these was inhibitory. Other nucleotide triphosphates, like GTP, UTP, CTP, TTP, ITP, or 2-deoxyATP also inhibited the enzyme activity. Inhibition by GTP was competitive with respect to ATP. ATP-sulphurylase activity was not affected by cysteine, methionine or glutathione.Abbreviations APS
adenosine-5-phosphosulphate
- PAPS
3-phosphoadenosine-5-phosphosulphate 相似文献
12.
Ammonia at a concentration of 1 ? 103M completely inhibitednitrogenase activity, as measured by acetylene reduction, inthe blue-green alga Anabaena cylindrica. Free ammonia was undetectablein cells grown either on N2 or ammonia within the limits ofprecision of the method used. Glutamic acid formed a major aminoacid pool in N2-grown cells, and basic amino acids, i.e. lysine,histidine and arginine were abundant in ammonia-grown cells.A 10-fold increase in the amounts of labile amino compound(s)was observed when N2-grown cells were exposed to ammonia. When cells were incubated under anaerobic conditions, the acetylene-reducingactivity increased 2-fold or more; ammonia had no effect. Oxygenwas required for ammonia to inhibit acetylene reduction. Modes of inhibition by ammonia on acetylene reduction were comparedwith those by chloramphenicol, puromycin, cycloheximide, DCMUand CCCP. On the basis of these comparisons we concluded thatammonia not only acts as a suppressor of nitrogenase synthesisbut also inhibits acetylene-reducing activity by lowering thesupply of reductant and/or of energy for the nitrogenase system. 1This work was supported by grant No. 38814 from the Ministryof Education. (Received July 30, 1973; ) 相似文献
13.
Nitrogen-starved cultures of the alga Anabaena cylindrica 629 produced hydrogen and oxygen continuously for 7 to 19 days. Hydrogen production attained a maximum level after 1 to 2 days of starvation and was followed by a slow decline. The maximum rates were 30 ml of H2 evolved per liter of culture per h or 32 mul of H2 per mg of dry weight per h. In 5 to 7 days the rate of H2 evolution by the more productive cultures fell to one-half its maximum value. The addition of 10(-4) to 5 X 10(-4) M ammonium increased the rate of oxygen evolution and the total hydrogen production of the cultures. H2-O2 ratios were 4:1 under conditions of complete nitrogen starvation and about 1.7:1 after the addition of ammonium. Thus, oxygen evolution was affected by the extent of the nitrogen starvation. Thermodynamic efficiencies of converting incident light energy to free energy of hydrogen via algal photosynthesis were 0.4%. Possible factors limiting hydrogen production were decline of reductant supply and filament breakage. Hydrogen production by filamentous, heterocystous blue-green algae could be used for development of a biophotolysis system. 相似文献
14.
Robert D. Simon 《Archives of microbiology》1977,111(3):283-288
Sporulation in the filamentous cyanobacterium Anabaena cylindrica involves the transformation of a vegetative cell into a thick-walled resistant structure. Because this process occurs at predictable loci in each filament and involves a significant increase in cell size, the course of sporulation in a culture can be quantitatively determined. Sporulation occurs during the late logarithmic phase of a culture, a time of slow but unbalanced growth. Under the conditions imployed here, sporulation is not a synchronous event either between or within filaments. The information in this paper provides an estimate of the rate of spore differentiation and supports the previous notion that in the formation of strings of more than one spore, a gradient of spore maturation exists. 相似文献
15.
Effects of adenine nucleotides and phosphate on adenosine triphosphate sulphurylase from Anabaena cylindrica.
下载免费PDF全文

Production of adenosine 5'-[35S]sulphatophosphate by a partially purified ATP sulphurylase from Anabaena cylindrica was inhibited by AMP, ADP and P1. Decreases in enzyme activity in the presence of these inhibitors were reversed by increasing the concentrations of ATP. The adenine nucleotides inhibited the enzyme competitively with respect to ATP. In the presence of P1, ATP showed a positive co-operative effect on enzyme activity. The inhibition by P1 was enhanced by increasing concentrations of MG2+. The effects of the adenine nucleotides and the interaction of P1 and Mg2+ on ATP sulphurylase activity are discussed in relation to the regulation of sulphate assimilation via the energy metabolism of the alga. 相似文献
16.
Involvement of a Primary Electrogenic Pump in the Mechanism for HCO(3) Uptake by the Cyanobacterium Anabaena variabilis
下载免费PDF全文

The response of the membrane potential to HCO3− supply has been studied in the cyanobacterium Anabaena variabilis strain M-3 under various conditions. Changes in potential were followed with the aid of the lipophilic cation tetraphenyl phosphonium bromide. 相似文献
17.
Composition of the Cellular Envelopes of Anabaena cylindrica 总被引:6,自引:1,他引:6
Comparative chemical analyses were made of the walls of vegetative cells, heterocysts, and spores, and of the mucilage of Anabaena cylindrica. The wall of the vegetative cell is composed predominantly of amino compounds, with a mannose-rich carbohydrate component comprising only 18% of the dry weight. In contrast, 62% of the heterocyst wall and 41% of the spore wall is carbohydrate. The carbohydrate moieties of the heterocyst wall and spore wall are similar in that the ratio of glucose, mannose, galactose, and xylose is approximately 75:20:3:4 in both walls. It appears that, during the differentiation of a vegetative cell into either a spore or a heterocyst, a glucose-rich wall polysaccharide is produced that is different from the polysaccharide component of the wall of the vegetative cell and of the sheath. In the case of the heterocyst, the wall was estimated to account for approximately 52% of the dry weight of the whole cell. 相似文献
18.
Summary High levels of glutamine synthetase, detected using both a biosynthetic assay (P
i release from ATP) and a -glutamyl transferase assay, are present in aerobically grown N2-fixing cultures of Anabaena cylindrica. The enzyme is soluble, has a pH optimum of 6.5–7.5, with a peak at 7.1–7.2 (biosynthetic activity) or 6.9 (transferase activity), and a temperature optimum at 30°C–40°C. Partially purified preparations are stable in air at 5°C for at least 3 days. Mg2+, Mn2+, Co2+ and Ca2+ support high rates of biosynthetic activity, Zn2+ is less effective and Cu2+ and Ba2+ are ineffective.Enzyme activity is regulated at several levels: possibly by repression and derepression of the enzyme in response to NH4
+ level; by variation in the Mn2+: ATP ratio with optimum activity at a 1:1 ratio; by feed-back inhibition which may be of a cumulative type. The consensus of the evidence suggests the absence of a covalent enzyme modification of the type found in E. coli.
Glutamine synthetase levels are almost twice as high on a protein basis in the heterocysts as in the vegetative cells. Apparent K
m values for whole filaments for NH4
+ and glutamate in the biosynthetic reactions are 1 mM and 2 mM respectively. 相似文献
19.
Photostimulation of nitrogen fixation in Anabaena cylindrica 总被引:5,自引:0,他引:5
P Fay 《Biochimica et biophysica acta》1970,216(2):353-356
20.
Hona Laczkó 《Physiologia plantarum》1985,63(2):221-224
The role of O2 photoreduction was studied in intact cells of normal and photobleached Anabaena cylindrica Lemm. strain PCC 7122. We found that O2 photoreduction represents a protective mechanism against over-reduction of the photosyn-thetic electron transport chain only in normal Anabaena cells. This protective mechanism was not functioning in photobleached cells in spite of the increased rate of photosynthetic electron flow. A new electron acceptor, the induced reversible hydrogenase, is suggested to be operating in photobleached Anabaena cylindrica . 相似文献