首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma prolactin (PRL) concentrations, osmolality, water consumption, feed intake, urine excretion, and fecal water output were determined in twelve steers of 3 breeds exposed to 5 feed and water regimes. Breed differences were found in water intake and plasma PRL concentrations when feed and water were ad lib., however, during any of the other 4 treatments, responses were similar between breeds. During dehydration and feed restriction, water intake, urine, fecal water, and plasma prolactin decreased; however, during hydration and refeeding such changes were not as clearly related. No consistent relationships between plasma prolactin and osmolality were found. Data suggests that PRL's role in fluid regulation in the bovine is most likely associated with alterations in renal hemodynamics rather than by changes in plasma osmolality.  相似文献   

2.
The effects of barbiturates on 24-h intakes of water and food and urinary excretion of sodium and potassium as well as on plasma concentration of sodium and potassium and osmolality were examined in dogs placed in metabolism cages and fed with a semiliquid diet. Administration of barbiturates stimulated drinking in a Series of 8 dogs having free access to water. Twenty four-h water intake and water balance increased significantly. Food intake, urinary output and urinary excretion of solutes, sodium and water did not change in this Series. A significant decrease in urine output as well as in osmolal clearance and urinary excretion of sodium was observed in a Series of 7 dogs having water restricted for 24 h following administration of barbiturates. Water balance increased in this Series. The same restriction of water in the dogs which had not received barbiturates did not modify renal excretion of water and electrolytes. Plasma osmolality, sodium and potassium concentrations did not change in either Series of experiments. It is concluded that barbiturates induce positive water balance either by stimulation of drinking when water is freely available or by reduction in urine output when water is restricted. The results suggest that expansion of the body fluids following the increased water intake may abolish reduction in urine output and sodium excretion which otherwise occur after administration of barbiturates.  相似文献   

3.
The aim of this study was to assess our hypothesis that the release of antidiuretic hormone (ADH), the renal concentrating response to ADH, or both is decreased by prolonged cold exposure. Six groups (n = 6/group) of rats were used. Three groups were exposed to cold (5 degrees C), whilethe remaining three groups were kept at room temperature (25 degrees C). It was found that urine osmolality decreased significantly and serum osmolality increased significantly during cold exposure. The ratio of water/food intake was not affected by prolonged cold exposure. However, prolonged cold exposure increased the ratio of urine output/food intake in the cold-exposed rats, indicating that more urine flow is required by the cold-exposed rats to excrete the osmotic substance at a given food intake. The difference between water intake and urine output decreased significantly in the cold-exposed rats. Thus, prolonged cold exposure increases water loss from excretion. Renal concentrating responses to 24-h dehydration and Pitressin were decreased significantly in the cold-exposed rats. Plasma ADH levels remained unchanged, but renal ADH receptor (V2 receptor) mRNA was decreased significantly in the cold-exposed rats. The results strongly support the conclusion that cold exposure increases excretive water loss, and this may be due to suppression of renal V2 receptors rather than inhibition of ADH release.  相似文献   

4.
The influence of food and water intake on renal function was assessed by comparisons between the hyperphagic Zucker obese rat and its lean littermate, which demonstrates nocturnal dominance in activity. Serum creatinine and cortisol levels, creatine kinase activities, creatinine and urine clearances, and sodium and potassium excretion rates were measured over a 24-hour period in both lean and obese rats (n = 24 each). Six rats in each group were studied every 8 h to permit characterization over a 12-hour light/dark cycle at 2-hour intervals. Urine and creatinine clearances were increased in lean rats during the dark phase coincident with onset of eating. Similarly, renal sodium and potassium excretion rates were markedly increased during the dark cycle, despite relatively constant serum potassium and sodium levels over the 24-hour period. In contrast, no circadian patterns in urine and creatinine clearances were found in the obese rat, which exhibits continuous feeding habits throughout the 24-hour period. Moreover, renal electrolyte excretion in the obese rat was modestly increased during the dark cycle, unlike the significant differences over time observed in lean rats. Serum creatinine levels were increased during the dark cycle in both rat groups. Creatine kinase activity, a measure of ambulatory activity, was constant in lean rats during the study period. Although creatine kinase activity was increased in obese rats during the dark cycle, no correlations with renal functional parameters were found. These results indicate that differences in food and water intake are significant determinants in diurnal cyclic changes in renal function.  相似文献   

5.
Body temperature, water intake, urine output, sodium and potassium excretion, osmolal and free water clearance, plasma osmolality, sodium and potassium concentrations and osmotic thirst were examined in conscious dogs during pyrogen fever and compared to those found under control conditions. Arterial blood pressure and central venous pressure were also measured in some experiments. Administration of pyrogen produced transient but significant decreases in urine output and striking increases in the spontaneous water intake in some of the experiments in the phase of increasing fever. Arterial blood pressure decreased, whetreas central venous pressure increased at this stage of fever. No significant changes in renal excretion of solutes and free water as well as sodium and potassium were found. Plasma osmolality and sodium concentration increased and potassium concentration decreased unsignificantly both in control and pyrogen experiments. The main finding was that the thirst threshold to osmotic stimuli increased markedly during the phase of stabilized fever may be caused by significant increase in internal body temperature.  相似文献   

6.
Summary Golden hamsters raised at 22°C were adapted in the early summer for 3 weeks to either 28°C or 5°C. To achieve profound changes the photoperiod was also shortened from 14 h to 11 h during adaptation to cold. During the investigation body weight, food consumption, water intake, urine production, and osmolality, as well as secreted amounts of noradrenaline (NA) and dopamine (DA), were recorded in each animal before, during, and after the adaptation period. In another group of golden hamsters the brains were processed for immunocytochemical detection of arginine-vasopressin (AVP) and corticotropin releasing factor (CRF) in the third week of adaptation to a cold or warm environment. In warm-adapted animals food and water consumption and urine production remained unchanged or were only slightly reduced. NA and DA secretion were reduced by 50%. The AVP-immunoreactivity reflected an antidiuretic state in these animals. In fibers influencing the adrenal axis, AVP-immunoreactivity was weak compared to CRF fibers. Food and water consumption, urine production, and DA secretion increased two-fold during cold adaptation. Daily secreted amounts of NA increased nine-fold. AVP-immunoreactivity was weak in projections to the neurohypophysis. Fibers influencing the adrenal axis, however, displayed strong AVP-immunoreactivity in comparison to that of CRF. The immunocytochemically determined patterns of AVP and CRF distribution indicated an activation of the osmoregulative axis in the warm-adapted animals and of the adrenal axis in the cold-adapted golden hamsters.Abbreviations NA noradrenaline - DA dopamine - AVP argininevasopressin - CRF corticotropin releasing factor - SON supraoptic nucleus  相似文献   

7.
The effects of water deprivation, rehydration and hyperhydration were investigated in the black Moroccan goat (Capra hircus). Mean daily water intake was 46 ± 5 ml/kg in lactating and 36 ± 4 ml/kg in non-lactating black Moroccan goats, and milk production 21 ± 1 ml/kg. Mean urine excretion was 8 ± 2 ml/kg body weight in both groups, and the daily water losses via evaporation and feces were estimated at 23 ± 3 ml/kg during lactation and 28 ± 4 ml/kg during non-lactation. Forty-eight hours of water deprivation caused a body weight loss of 9% and 6% in lactating and non-lactating goats, respectively, and a drop of 28% in milk production with only a slight decrease in food intake. After rehydration, the elevated plasma osmolality as well as Na and total protein concentrations returned to basal values within 2–3 hr, indicating a rapid absorption of the ingested water, but urine excretion did not increase. After hyperhydration (10% of body weight), 46% of the load was excreted by the kidneys within 6 hr. In conclusion, black Moroccan goats have a low water turnover, and they can retain water upon rehydration but not store excess water after hyperhydration.  相似文献   

8.
1. In a study on the renal handling of potassium by the dik-dik antelope, plasma and urine samples were analysed for potassium, sodium and creatinine concentrations and osmolality during dehydration and intra-ruminal loading of potassium solutions. 2. The fractional excretion of potassium was 0.64 during the control period and rose up to as high as 2.3 during potassium loading. Urinary osmolality and potassium concentration decreased as the urine volume increased but the total amounts of potassium excreted were independent of urine volume. 3. Potassium loading led to a steady increase in its urinary excretion but a decrease in plasma potassium concentration was observed. This observation casts doubt on the hypothesis that alterations in potassium intake produce parallel alterations in plasma potassium concentration (which supposedly stimulates or depresses potassium excretion) and thereby maintain potassium homeostasis. 4. A possible alternative signal for increased potassium excretion following increased intake is discussed.  相似文献   

9.
Bottlenose dolphins (Tursiops truncatus) are marine mammals with body water needs challenged by little access to fresh water and constant exposure to salt water. Osmoregulation has been studied in marine mammals for a century. Research assessing the effects of ingested fresh water or seawater in dolphins, however, has been limited to few animals and sampling times. Nine 16- to 25-h studies were conducted on eight adult dolphins to assess the hourly impact of fresh water, seawater, and seawater with protein ingestion on plasma and urine osmolality, urine flow rate (ufr), urinary and plasma solute concentrations, and solute clearance rates. Fresh water ingestion increased ufr. Fresh water ingestion also decreased plasma and urine osmolality, sodium and chloride urine concentrations, and solute excretion rates. Seawater ingestion resulted in increased ufr, sodium, chloride, and potassium urine concentrations, sodium excretion rates, and urine osmolality. Seawater with protein ingestion was associated with increased ufr, plasma osmolality, sodium excretion, and sodium, chloride, potassium, and urea urine concentrations. In conclusion, bottlenose dolphins appear to maintain water and plasma solute balance after ingesting fresh water or seawater by altering urine osmolality and solute clearance. Ingestion of protein with seawater appears to further push osmoregulation limits and urine solute concentrations in dolphins.  相似文献   

10.
Thrichomys apereoides is widely distributed in the Caatinga, a semi-arid region in Brazil, but is presumed to lack capabilities for water conservation. In the present study, we compared two populations of adult individuals living under different precipitation conditions (700 and 450 mm year(-1)). Animals from the less dry area were twice as heavy as those from the drier locality. Under ad libitum water regimen, there were differences between populations in relative food intake as well as in water intake and urine concentration, but not in normalized body mass water intake. Under short-term water deprivation, both populations presented similar body mass loss. Whereas individuals from the more arid locality maintained food consumption, urine volume and urine osmolality, Thrichomys from the less dry locality reduced food consumption and urine volume. The occurrence of anuria in 75% of animals from this population indicates that the limits of their ability to deal with water shortage had been reached. The morphological and physiological difference and the non-allometric similarities found between the two populations of T. apereoides fulfill the criteria for physiological adaptations to differences in annual rainfall. Our data challenge the hypothesis that the irregularity of annual rainfall in the Caatinga precludes the evolution of adaptations to this semi-arid climate.  相似文献   

11.
Nectarivorous whitebellied sunbirds, Nectarinia talatala, demonstrate distinct circadian patterns in osmoregulatory parameters. We recorded intake of a 1 mol/l sucrose solution which enabled calculation of total water gain, and collected cloacal fluid for measurements of volume, osmolality and aldosterone concentration. These variables were assessed hourly over 12 h of photophase, and averaged over the 12-h scotophase period. Overnight, when sunbirds were in negative water balance, aldosterone concentrations and outputs were significantly higher than diurnal levels, reflecting a shut-down of cloacal fluid production. Early morning was marked by a high rate of osmotic excretion, disproportionate to water gain or cloacal fluid output, followed by steady intake and cloacal fluid output during the morning and early afternoon. Reduced water flux (decreased feeding and cloacal fluid output) during mid-afternoon was accompanied by a paradoxical decline in osmotic excretion, whilst a significant increase in the discrepancy between water intake and output was recorded as the birds effectively stored water before the scotophase. These patterns of intake and excretion may be informative in explaining drinking and foraging behaviour in the field.Abbreviations ALDO aldosterone - CF cloacal fluid - GFR glomerular filtration rate  相似文献   

12.
Metipamide [M], a new Czechosclovak diuretic with a hypotensive effect, was administered in a dose of 20 mg/kg (about 500-fold the therapeutic dose) I. for three weeks to rats of both sexes kept under normal conditions in groups of five, and II, for eight days to single male rats in metabolic cages. The animals' body weight and food and water consumption were studied and in the second series their daily faeces, urine and urinary sodium and potassium excretion were measured. Rats kept in individual cages were also given indapamide (I), the first diuretic with a separate hypotensive effect used in other countries, in a dose of 20 mg/kg. The experimental animals' body weight was significantly lower than that of controls with the same food consumption and their water intake and urine flow were much higher, especially after M. Sodium (and to a lesser extent potassium) excretion was raised at the outset of administration of both the test substances and again after the 5th to 8th dose, but only after M. After three weeks' administration of M. SNa, SK and S(osm) values were within normal limits. but after eight days the serum electrolytes and the osmolality of the serum were markedly reduced. After I. these values were normal. We conclude that the strong diuretic effect of M is not the only cause of lower body weight in rats.  相似文献   

13.
The effects on fetal renal function of restricting maternal water intake to 1 l/day for 6 days was investigated in 7 chronically-catheterized fetuses (gestation age 118-131 days). Restriction of water intake caused a significant decrease in maternal urine flow rate and significant increases in maternal plasma and urinary osmolality. Fetal renal function was investigated on the third and sixth days of the period of restricted maternal intake of water. Urine flow rate from the fetus was depressed significantly, and urinary osmolality increased significantly. The glomerular filtration rate remained unchanged, and free water clearance was decreased. These changes indicate increased water reabsorption in the distal parts of the nephron, probably consequent upon increased circulating levels of antidiuretic hormone. In 3 fetuses whose mothers subsequently had free access to water, these changes in urine flow rate and free water clearance that occurred during water restriction were reversed. There was an inverse correlation between maternal plasma osmolality and fetal free water clearance corrected for glomerular filtration rate. It is concluded that when water intake by a pregnant animal is restricted, the availability of water to the fetus is reduced and fetal sheep respond by producing a concentrated urine.  相似文献   

14.
The responses to infusion of nitric oxide synthase substrate (L-arginine 3 mg.kg(-1).min(-1)) and to slow volume expansion (saline 35 ml/kg for 90 min) alone and in combination were investigated in separate experiments. L-Arginine left blood pressure and plasma ANG II unaffected but decreased heart rate (6 +/- 2 beats/min) and urine osmolality, increased glomerular filtration rate (GFR) transiently, and caused sustained increases in sodium excretion (fourfold) and urine flow (0.2 +/- 0.0 to 0.7 +/- 0.1 ml/min). Volume expansion increased arterial blood pressure (102 +/- 3 to 114 +/- 3 mmHg), elevated GFR persistently by 24%, and enhanced sodium excretion to a peak of 251 +/- 31 micromol/min, together with marked increases in urine flow, osmolar and free water clearances, whereas plasma ANG II decreased (8.1 +/- 1.7 to 1.6 +/- 0.3 pg/ml). Combined volume expansion and L-arginine infusion tended to increase arterial blood pressure and increased GFR by 31%, whereas peak sodium excretion was enhanced to 335 +/- 23 micromol/min at plasma ANG II levels of 3.0 +/- 1.1 pg/ml; urine flow and osmolar clearance were increased at constant free water clearance. In conclusion, L-arginine 1) increases sodium excretion, 2) decreases basal urine osmolality, 3) exaggerates the natriuretic response to volume expansion by an average of 50% without persistent changes in GFR, and 4) abolishes the increase in free water clearance normally occurring during volume expansion. Thus L-arginine is a natriuretic substance compatible with a role of nitric oxide in sodium homeostasis, possibly by offsetting/shifting the renal response to sodium excess.  相似文献   

15.
Collecting duct (CD) adenylyl cyclase VI (AC6) has been implicated in arginine vasopressin (AVP)-stimulated renal water reabsorption. To evaluate the role of CD-derived AC6 in regulating water homeostasis, mice were generated with CD-specific knockout (KO) of AC6 using the Cre/loxP system. CD AC6 KO and controls were studied under normal water intake, chronically water loaded, or water deprived; all of these conditions were repeated in the presence of continuous administration of 1-desamino-8-d-arginine vasopressin (DDAVP). During normal water intake or after water deprivation, urine osmolality (U(osm)) was reduced in CD AC6 KO animals vs. controls. Similarly, U(osm) was decreased in CD AC6 KO mice vs. controls after water deprivation+DDAVP administration. Pair-fed (with controls) CD AC6 KO mice also had lower urine osmolality vs. controls. There were no detectable differences between KO and control animals in fluid intake or urine volume under any conditions. CD AC6 KO mice did not have altered plasma AVP levels vs. controls. AVP-stimulated cAMP accumulation was reduced in acutely isolated inner medullary CD (IMCD) from CD A6 KO vs. controls. Medullary aquaporin-2 (AQP2) protein expression was lower in CD AC6 KO mice vs. controls. There were no differences in urinary urea excretion or IMCD UT-A1 expression; however, IMCD UT-A3 expression was reduced in CD AC6 KO mice vs. controls. In summary, AC6 in the CD regulates renal water excretion, most likely through control of AVP-stimulated cAMP accumulation and AQP2.  相似文献   

16.
The exact mechanism underlying thiazides-induced paradoxical antidiuresis in diabetes insipidus is still elusive, but it has been hypothesized that it is exerted either via Na+-depletion activating volume-homeostatic reflexes to decrease distal delivery, or direct stimulation of distal water reabsorption. This study examined how these two proposed mechanisms actually cooperate to induce an acute bendroflumethiazide (BFTZ)-antidiuretic effect in nephrogenic diabetes insipidus (NDI). Anaesthetized rats with lithium (Li)-induced NDI were prepared in order to measure their renal functional parameters, and in some of them, bilateral renal denervation (DNX) was induced. After a 30 min control clearance period, we infused either BFTZ into 2 groups, NDI+BFTZ and NDI/DNX+BFTZ, or its vehicle into a NDI+V group, and six 30 min experimental clearance periods were taken. During BFTZ infusion in the NDI+BFTZ group, transiently elevated Na+ excretion was associated with rapidly increased urinary osmolality and decreased free water clearance, but Li clearance and urine flow declined in the later periods. However, in the NDI/DNX+BFTZ group, there was persistently elevated Na+ excretion with unchanged Li clearance and urine flow during the experimental period, while alterations in free water clearance and urinary osmolality resembled those in the NDI+BFTZ group. In conclusion, BFTZ initially exerted two direct effects of natriuresis-diuresis and stimulating free water reabsorption at the distal nephron in NDI, which together elevated Na+ excretion and urinary osmolality but kept the urine volume unchanged in the first hour. Thereafter, the resultant sodium depletion led to the activation of neural reflexes that reduced distal fluid delivery to compensate for BFTZ-induced natriuresis-diuresis which, in cooperation with the direct distal BFTZ-antidiuretic effect, resulted in excretion of urine with a low volume, high osmolality, and normal sodium.  相似文献   

17.
The circadian rhythms of food and 1% NaCl intake, and urine, Na+, Cl- and K+ excretion were followed up in male Wistar rats before and one week after bilateral adrenalectomy at 4-hour intervals during two consecutive days. The circadian rhythms of plasma renin activity (PRA) and plasma immunoreactive insulin (IRI) were evaluated after decapitation of both intact and adrenalectomized rats at 08, 16 and 24 h. To all rats 1% NaCl was offered instead of drinking water. Adrenalectomy did not cause any significant phase shift in the cosine curves approximating the data collected at 4-hour intervals. The circadian rhythms showed the same relationships before and after the operation: the rhythms of food intake, K+ excretion and saline intake preceded significantly the rhythms of urine, Na+ and Cl- excretion. Adrenalectomy induced an increase in mean PRA and shifted its minimal value from 08 to 24 h. After the operation mean IRI decreased and the minimal value shifted from 16 to 24 h. It was concluded that adrenal glands do not play an important role in the synchronization of the circadian rhythms of food and 1% NaCl intake, urine and synchronization of the circadian rhythms of food and 1% NaCl intake, urine and electrolyte excretion with the illumination cycle, but play a relevant role in the synchronization of the circadian rhythms of PRA and IRI in the rat.  相似文献   

18.
Leopard tortoises (Stigmochelys pardalis) experience wide fluctuations in environmental conditions and unpredictable availability of food and water within the Nama-Karoo biome. It was hypothesised that tortoises fed two diets differing in preformed water and fibre content would have differing food intake, gut transit rate, assimilation efficiency, faecal and urinary water loss, and urine concentrations. It was predicted that tortoises fed these contrasting diets would attempt to maintain energy and water balance by altering their digestive parameters. Leopard tortoises fed lucerne (Medicago sativa) had a low food intake coupled with long gut transit times, which resulted in the lowest amount of faecal energy and faecal water lost. Tortoises fed tomatoes (Solanum lycopersicum) had higher food intake and faster gut transit times, but more energy and water was lost in the faeces. However, daily energy assimilated and assimilation efficiency were comparable between tortoises fed the two diets. Urine osmolality was significantly different between tortoises on the two diets. Results indicate that leopard tortoises can adjust parameters such as transit rate, food intake, water loss and urine osmolality to maintain body mass, water and energy balance in response to a high fibre, low water content and a low fibre, high water content diet. This study suggests that this digestive flexibility allows leopard tortoises in the wild to take advantage of unpredictable food and water resources.  相似文献   

19.
The age-specific features of renal functions have been studied in older adolescents and young adults training in ski racing before and after their water and food intake and training loads. Baseline renal functions in the morning demonstrated higher glomerular filtration rate (GFR) and more mature development of the osmoregulatory mechanisms (higher excretion of osmotically active substances, osmotic concentration index, and reabsorption of solute-free liquid) in young adults, compared with adolescents. After food intake, the osmoregulatory mechanisms provided in young adults an adequate renal response—increased excretion of ions in exchange for urea, which preserves osmolality. At the same time, increased excretion of osmotically active substances synchronously with growth in the rate of urine output, higher GFR and reabsorption of solute-free liquid was marked in adolescents, which points to less mature development of the osmoregulatory system. The similar trend of renal homeostatic responses after physical training indicated the activation of volume regulatory mechanisms which did not differ between age groups. Our conclusion is that the definitive volume regulation develops ahead of osmoregulation.  相似文献   

20.
This study examined the effect of subcutaneous administration of the neurohormone oxytocin on water intake of ad lib-fed (with or without sodium availability in the diet) and food-deprived animals. Results of the first experiment showed that oxytocin increased water intake and urine excretion in food-deprived but not in ad lib-fed animals. However, oxytocin treatment did not modify the reduced water "balance" (fluid intake minus urine volume) resulting from food deprivation or the daily food intake (Experiment 1). The dose-dependent polydipsic effect of oxytocin on food-deprived rats was always preceded by an increase in sodium and fluid urine excretion (Experiment 2). Oxytocin also increased the water intake of animals fed ad lib with a low sodium diet (Experiment 3). These results suggest that the effect of oxytocin on water intake is dependent on the presence or absence of sodium in the diet and that the excretion of sodium is the main mechanism of oxytocinergic polydipsia in food-deprived male rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号