首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kissing-loop complex that initiates dimerization of genomic RNA is crucial for Human Immunodeficiency Virus Type 1 (HIV-1) replication. We showed that owing to its strong similitude with the bacterial ribosomal A site it can be targeted by aminoglycosides. Here, we present its crystal structure in complex with neamine, ribostamycin, neomycin and lividomycin. These structures explain the specificity for 4,5-disubstituted 2-deoxystreptamine (DOS) derivatives and for subtype A and subtype F kissing-loop complexes, and provide a strong basis for rational drug design. As a consequence of the different topologies of the kissing-loop complex and the A site, these aminoglycosides establish more contacts with HIV-1 RNA than with 16S RNA. Together with biochemical experiments, they showed that while rings I, II and III confer binding specificity, rings IV and V are important for affinity. Binding of neomycin, paromomycin and lividomycin strongly stabilized the kissing-loop complex by bridging the two HIV-1 RNA molecules. Furthermore, in situ footprinting showed that the dimerization initiation site (DIS) of HIV-1 genomic RNA could be targeted by these aminoglycosides in infected cells and virions, demonstrating its accessibility.  相似文献   

2.
Owing to a striking, and most likely fortuitous, structural and sequence similarity with the bacterial 16 S ribosomal A site, the RNA kissing-loop complex formed by the HIV-1 genomic RNA dimerization initiation site (DIS) specifically binds 4,5-disubstituted 2-deoxystreptamine (2-DOS) aminoglycoside antibiotics. We used chemical probing, molecular modeling, isothermal titration calorimetry (ITC) and UV melting to investigate aminoglycoside binding to the DIS loop–loop complex. We showed that apramycin, an aminoglycoside containing a bicyclic moiety, also binds the DIS, but in a different way than 4,5-disubstituted 2-DOS aminoglycosides. The determination of thermodynamic parameters for various aminoglycosides revealed the role of the different rings in the drug–RNA interaction. Surprisingly, we found that the affinity of lividomycin and neomycin for the DIS (Kd ~ 30 nM) is significantly higher than that obtained in the same experimental conditions for their natural target, the bacterial A site (Kd ~ 1.6 µM). In good agreement with their respective affinity, aminoglycoside increase the melting temperature of the loop–loop interaction and also block the conversion from kissing-loop complex to extended duplex. Taken together, our data might be useful for selecting new molecules with improved specificity and affinity toward the HIV-1 DIS RNA.  相似文献   

3.
The untranslated leader of retroviral RNA genomes encodes multiple structural signals that are critical for virus replication. In the human immunodeficiency virus, type 1 (HIV-1) leader, a hairpin structure with a palindrome-containing loop is termed the dimer initiation site (DIS), because it triggers in vitro RNA dimerization through base pairing of the loop-exposed palindromes (kissing loops). Controversy remains regarding the region responsible for HIV-2 RNA dimerization. Different studies have suggested the involvement of the transactivation region, the primer binding site, and a hairpin structure that is the equivalent of the HIV-1 DIS hairpin. We have performed a detailed mutational analysis of the HIV-2 leader RNA, and we also used antisense oligonucleotides to probe the regions involved in dimerization. Our results unequivocally demonstrate that the DIS hairpin is the main determinant for HIV-2 RNA dimerization. The 6-mer palindrome sequence in the DIS loop is essential for dimer formation. Although the sequence can be replaced by other 6-mer palindromes, motifs that form more than two A/U base pairs do not dimerize efficiently. The inability to form stable kissing-loop complexes precludes formation of dimers with more extended base pairing. Structure probing of the DIS hairpin in the context of the complete HIV-2 leader RNA suggests a 5-base pair elongation of the DIS stem as it is proposed in current RNA secondary structure models. This structure is supported by phylogenetic analysis of leader RNA sequences from different viral isolates, indicating that RNA genome dimerization occurs by a similar mechanism for all members of the human and simian immunodeficiency viruses.  相似文献   

4.
Retroviruses encapsidate their genome as a dimer of homologous RNA molecules noncovalently linked close to their 5' ends. The dimerization initiation site (DIS) of human immunodeficiency virus type 1 (HIV-1) RNA is a hairpin structure that contains in the loop a 6-nt self-complementary sequence flanked by two 5' and one 3' purines. The self-complementary sequence, as well as the flanking purines, are crucial for dimerization of HIV-1 RNA, which is mediated by formation of a "kissing-loop" complex between the DIS of each monomer. Here, we used chemical modification interference, lead-induced cleavage, and three-dimensional modeling to compare dimerization of subtype A and B HIV-1 RNAs. The DIS loop sequences of these RNAs are AGGUGCACA and AAGCGCGCA, respectively. In both RNAs, ethylation of most but not all phosphate groups in the loop and methylation of the N7 position of the G residues in the self-complementary sequence inhibited dimerization. These results demonstrate that small perturbations of the loop structure are detrimental to dimerization. Conversely, methylation of the N1 position of the first and last As in the loop were neutral or enhanced dimerization, a result consistent with these residues forming a noncanonical sheared base pair. Phosphorothioate interference, lead-induced cleavage, and Brownian-dynamics simulation revealed an unexpected difference in the dimerization mechanism of these RNAs. Unlike subtype B, subtype A requires binding of a divalent cation in the loop to promote RNA dimerization. This difference should be taken into consideration in the design of antidimerization molecules aimed at inhibiting HIV-1 replication.  相似文献   

5.
Dimerization of the genomic RNA is an important step of the HIV-1 replication cycle. The Dimerization Initiation Site (DIS) promotes dimerization of the viral genome by forming a loop-loop complex between two DIS hairpins. Crystal structures of the DIS loop-loop complex revealed an unexpected and strong similitude with the bacterial 16S ribosomal aminoacyl-tRNA site (A site), which is the target of aminoglycoside antibiotics. As a consequence of these structural and sequence similarities, the HIV-1 DIS also binds some aminoglycosides, not only in vitro, but also ex vivo, in lymphoid cells and in viral particles. Crystal structures of the DIS loop-loop in complex with several aminoglycoside antibiotics provide a detailed-view of the DIS/drug interaction and reveal some hints about possible modifications to increase the drug affinity and/or specificity.  相似文献   

6.
Dimer formation of HIV-1 genomic RNA through its dimerization initiation site (DIS) is crucial to maintaining infectivity. Two types of dimers, the initially generated kissing-loop dimer and the subsequent product of the extended-duplex dimer, are formed in the stem-bulge-stem region with a loop including a self-complementary sequence. NMR chemical shift analysis of a 39mer RNA corresponding to DIS, DIS39, in the kissing-loop and extended-duplex dimers revealed that the three dimensional structures of the stem-bulge-stem region are extremely similar between the two types of dimers. Therefore, we designed two shorter RNA molecules, loop25 and bulge34, corresponding to the loop-stem region and the stem-bulge-stem region of DIS39, respectively. Based upon the chemical shift analysis, the conformation of the loop region of loop25 is identical to that of DIS39 for each of the two types of dimers. The conformation of bulge34 was also found to be the same as that of the corresponding region of DIS39. Thus, we determined the solution structures of loop25 in each of the two types of dimers as well as that of bulge34. Finally, the solution structures of DIS39 in the kissing-loop and extended-duplex dimers were determined by combining the parts of the structures. The solution structures of the two types of dimers were similar to each other in general with a difference found only in the A16 residue. The elucidation of the structures of DIS39 is important to understanding the molecular mechanism of the conformational dynamics of viral RNA molecules.  相似文献   

7.
We describe the crystal structures of the RNA dimerization initiation sites (DIS) of HIV-1 subtypes A and B. Both molecules adopt a hairpin conformation, with loop sequences consisting of 272-AGGUGCACA-280 and 272-AAGCGCGCA-280, respectively. This includes a six-base self-complementary stretch (underlined) that allows homodimerization through the formation of a loop-loop, or 'kissing-loop', complex. The DISs for the two sequences have identical conformations, and the two interacting hairpins show a perfect coaxial alignment. The conserved purines, A272 and R273, are stacked in a bulged-out conformation and symmetrically join the upward and downward strands of each hairpin by crossing the helix major groove. There is good agreement between these structures and previous results from chemical probing in solution, as well as with differences in magnesium dependence for dimerization. The overall shape of the kissing-loop complex is very similar to that of the previously determined subtype A DIS duplex form. Unexpectedly, the purine R273 is the only base seen at a different position and is responsible for the difference in topology between the two forms. We propose that the transition from kissing-loop duplex could occur by a recombination mechanism based on symmetrical chain cleavage at R273 of each hairpin and subsequent cross-religation, rather than by base-pair melting and subsequent reannealing.  相似文献   

8.
Loop-loop interactions among nucleic acids constitute an important form of molecular recognition in a variety of biological systems. In HIV-1, genomic dimerization involves an intermolecular RNA loop-loop interaction at the dimerization initiation site (DIS), a hairpin located in the 5' noncoding region that contains an autocomplementary sequence in the loop. Only two major DIS loop sequence variants are observed among natural viral isolates. To investigate sequence and structural constraints on genomic RNA dimerization as well as loop-loop interactions in general, we randomized several or all of the nucleotides in the DIS loop and selected in vitro for dimerization-competent sequences. Surprisingly, increasing interloop complementarity above a threshold of 6 bp did not enhance dimerization, although the combinations of nucleotides forming the theoretically most stable hexanucleotide duplexes were selected. Noncanonical interactions contributed significantly to the stability and/or specificity of the dimeric complexes as demonstrated by the overwhelming bias for noncanonical base pairs closing the loop and covariations between flanking and central loop nucleotides. Degeneration of the entire loop yielded a complex population of dimerization-competent sequences whose consensus sequence resembles that of wild-type HIV-1. We conclude from these findings that the DIS has evolved to satisfy simultaneous constraints for optimal dimerization affinity and the capacity for homodimerization. Furthermore, the most constrained features of the DIS identified by our experiments could be the basis for the rational design of DIS-targeted antiviral compounds.  相似文献   

9.
Cao S  Chen SJ 《RNA (New York, N.Y.)》2011,17(12):2130-2143
We develop a statistical mechanical model to predict the structure and folding stability of the RNA/RNA kissing-loop complex. One of the key ingredients of the theory is the conformational entropy for the RNA/RNA kissing complex. We employ the recently developed virtual bond-based RNA folding model (Vfold model) to evaluate the entropy parameters for the different types of kissing loops. A benchmark test against experiments suggests that the entropy calculation is reliable. As an application of the model, we apply the model to investigate the structure and folding thermodynamics for the kissing complex of the HIV-1 dimerization initiation signal. With the physics-based energetic parameters, we compute the free energy landscape for the HIV-1 dimer. From the energy landscape, we identify two minimal free energy structures, which correspond to the kissing-loop dimer and the extended-duplex dimer, respectively. The results support the two-step dimerization process for the HIV-1 replication cycle. Furthermore, based on the Vfold model and energy minimization, the theory can predict the native structure as well as the local minima in the free energy landscape. The root-mean-square deviations (RMSDs) for the predicted kissing-loop dimer and extended-duplex dimer are ∼3.0 Å. The method developed here provides a new method to study the RNA/RNA kissing complex.  相似文献   

10.
11.
BACKGROUND: An important step in retroviral replication is dimerization of the genomic RNA prior to encapsidation. Dimerization is initiated by the formation of a transient 'kissing-loop complex' that is thought to be subsequently matured into an extended duplex by the nucleocapsid protein (NCp). Although chemical probing and nuclear magnetic resonance spectroscopy have provided insight into the structure of the kissing-loop structure, no structural information concerning the extended-duplex state is available so far. RESULTS: The structure of a minimal HIV-1 RNA dimerization initiation site has been solved at 2.3 A resolution in two different space groups. It reveals a 22 base pair extended duplex with two noncanonical Watson-Crick-like G-A mismatches, each adjacent to a bulged-out adenine. The structure shows significant asymmetry in deep groove width and G-A base-pair conformations. A network of eight magnesium cations was clearly identified, one being unusually chelated by the 3' phosphate of each bulge across an extremely narrowed deep major groove. CONCLUSIONS: These crystal structures represent the putative matured form of the initial kissing-loop complex. They show the ability of this self-complementary RNA hairpin loop to acquire a more stable extended duplex structure. Both bulged adenines form a striking 'base grip' that could be a recognition signal, either in cis for another viral RNA sequence, or in trans for a protein, possibly the NCp. Magnesium binding might be important to promote and stabilize the observed extrahelical conformation of these bulges.  相似文献   

12.
13.
All retroviruses encapsidate their genome as a dimer of homologous single-stranded RNAs. The dimerization initiation site (DIS) of human immunodeficiency virus type 1 (HIV-1) is located in the 5'-untranslated region of the viral genome and consists of a hairpin with a 6 nt self-complementary loop sequence. Genomic RNA dimerization, a crucial step for virion infectivity, is promoted by the formation of a loop-loop complex (or kissing complex) between two DIS hairpins. Crystal structures for the subtypes A, B and F of the HIV-1 DIS kissing complex have now been solved at 2.3 A, 1.9 A and 1.6 A, respectively. They revealed a polymorphism of bulged-out residues showing clearly that their conformation is not a mere consequence of crystal packing. They also provide more insights into ion binding, hydration, and RNA conformation and flexibility. In particular, we observed the binding of spermine to the loop-loop helix, which displaced a magnesium cation important for subtype A DIS dimerization. The excellent agreement between X-ray structures and the results of chemical probing and interference data on larger viral RNA fragments shows that the crystal structures are relevant for the DIS kissing complex present in solution and in viral particles. Accordingly, these structures will be helpful for designing new drugs derived from aminoglycoside antibiotics and targeted against the RNA dimerization step of the viral life-cycle.  相似文献   

14.
Generation of RNA dimeric form of the human immunodeficiency virus type 1 (HIV-1) genome is crucial for viral replication. The dimerization initiation site (DIS) has been identified as a primary sequence that can form a stem-loop structure with a self-complementary sequence in the loop and a bulge in the stem. It has been reported that HIV-1 RNA fragments containing the DIS form two types of dimers, loose dimers and tight dimers. The loose dimers are spontaneously generated at the physiological temperature and converted into tight dimers by the addition of nucleocapsid protein NCp7. To know the biochemical process in this two-step dimerization reaction, we chemically synthesized a 39-mer RNA covering the entire DIS sequence and also a 23-mer RNA covering the self-complementary loop and its flanking stem within the DIS. Electrophoretic dimerization assays demonstrated that the 39-mer RNA reproduced the two-step dimerization process, whereas the 23-mer RNA immediately formed the tight dimer. Furthermore, deletion of the bulge from the 39-mer RNA prevented the NCp7-assisted tight-dimer formation. Therefore, the whole DIS sequence is necessary and sufficient for the two-step dimerization. Our data suggested that the bulge region regulates the stability of the stem and guides the DIS to the two-step dimerization process.  相似文献   

15.
16.
Dimerization of two homologous strands of genomic RNA is an essential feature of the retroviral replication cycle. In HIV-1, genomic RNA dimerization is facilitated by a conserved stem-loop structure located near the 5' end of the viral RNA called the dimerization initiation site (DIS). The DIS loop is comprised of nine nucleotides, six of which define an autocomplementary sequence flanked by three conserved purine residues. Base- pairing between the loop sequences of two copies of genomic RNA is necessary for efficient dimerization. We previously used in vitro evolution to investigate a possible structural basis for the marked sequence conservation of the DIS loop. In this study, chemical structure probing, measurements of the apparent dissociation constants, and computer structure analysis of dimerization-competent aptamers were used to analyze the dimers' structure and binding. The selected aptamers were variants of the naturally occurring A and B subtypes. The data suggest that a sheared base-pair closing the loop of the DIS is important for dimerization in both subtypes. On the other hand, the open or closed state of the last base-pair in the stem differed in the two subtypes. This base-pair appeared closed in the subtype A DIS dimer and open in subtype B. Finally, evidence for a cross-talk between nucleotides 2, 5, and 6 was found in some, but not all, loop contexts, indicating some structural plasticity depending on loop sequence. Discriminating between the general rules governing dimer formation and the particular characteristics of individual DIS aptamers helps to explain the affinity and specificity of loop-loop interactions and could provide the basis for development of drugs targeted against the dimerization step during retroviral replication.  相似文献   

17.
Dimerization of HIV-1 genomic RNA is an essential step of the viral cycle, initiated at a conserved stem-loop structure which forms a 'kissing complex' involving loop-loop interactions (dimerization initiation site, DIS). A 19mer RNA oligonucleotide (DIS-19) has been synthesized which forms a stable symmetrical dimer in solution at millimolar concentrations. Dimerization does not depend on addition of Mg2+. RNA ligation experiments unambiguously indicate that the formed dimer is a stable kissing complex under the NMR experimental conditions.1H NMR resonance assignments were obtained for DIS-19 at 290 K and pH 6.5. Analysis of the pattern of NOE connectivities reveals that the helix formed by loop-loop base pairing is stacked onto the two terminal stems. Non-canonical base pairs between two essential and conserved adenines are found at the junctions between the two intramolecular and the single intramolecular helices.  相似文献   

18.
19.
The 5′ leader of the HIV-1 RNA genome encodes signals that control various steps in the replication cycle, including the dimerization initiation signal (DIS) that triggers RNA dimerization. The DIS folds a hairpin structure with a palindromic sequence in the loop that allows RNA dimerization via intermolecular kissing loop (KL) base pairing. The KL dimer can be stabilized by including the DIS stem nucleotides in the intermolecular base pairing, forming an extended dimer (ED). The role of the ED RNA dimer in HIV-1 replication has hardly been addressed because of technical challenges. We analyzed a set of leader mutants with a stabilized DIS hairpin for in vitro RNA dimerization and virus replication in T cells. In agreement with previous observations, DIS hairpin stability modulated KL and ED dimerization. An unexpected previous finding was that mutation of three nucleotides immediately upstream of the DIS hairpin significantly reduced in vitro ED formation. In this study, we tested such mutants in vivo for the importance of the ED in HIV-1 biology. Mutants with a stabilized DIS hairpin replicated less efficiently than WT HIV-1. This defect was most severe when the upstream sequence motif was altered. Virus evolution experiments with the defective mutants yielded fast replicating HIV-1 variants with second site mutations that (partially) restored the WT hairpin stability. Characterization of the mutant and revertant RNA molecules and the corresponding viruses confirmed the correlation between in vitro ED RNA dimer formation and efficient virus replication, thus indicating that the ED structure is important for HIV-1 replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号