首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HeLa cells infected with the nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses (Ad2(+)ND1, Ad2(+)ND2, Ad2(+)ND4, and Ad2(+)ND5) synthesize SV40-specific proteins ranging in size from 28,000 to 100,000 daltons. By analysis of their methionine-containing tryptic peptides, we demonstrated that all these proteins shared common amino acid sequences. Most methionine-containing tryptic peptides derived from proteins of smaller size were contained within the proteins of larger size. Seventeen of the 21 methionine-containing tryptic peptides of the largest SV40-specific protein (100,000 daltons) from Ad2(+)ND4-infected cells were identical to methionine-containing peptides of SV40 T-antigen immunoprecipitated from extracts of SV40-infected cells. All of the methionine-containing tryptic peptides of the Ad2(+)ND4 100,000-dalton protein were found in SV40 T-antigen immunoprecipitated from SV40-transformed cells. All SV40-specific proteins observed in vivo could be synthesized in vitro using the wheat germ cell-free system and SV40-specific RNA from hybrid virus-infected cells that was purified by hybridization to SV40 DNA. As proof of identity, the in vitro products were shown to have methionine-containing tryptic peptides identical to those of their in vivo counterparts. Based on the extensive overlap in amino acid sequence between the SV40-specific proteins from hybrid virus-infected cells and SV40 T-antigen from SV40-infected and -transformed cells, we conclude that at least the major portion of the SV40-specific proteins cannot be Ad2 coded. From the in vitro synthesis experiments with SV40-selected RNA, we further conclude that the SV40-specific proteins must be SV40 coded and not host coded. Since SV40 T-antigen is related to the SV40-specific proteins, it must also be SV40 coded.  相似文献   

2.
E Paucha  A E Smith 《Cell》1978,15(3):1011-1020
To demonstrate directly that the carboxy terminal portion of simian virus 40 (SV40) small t is encoded by a sequence of nucleotides from the region between 0.59-0.54 map units on SV40 DNA, we characterized the putative shortened forms or fragments of small t produced by mutants of SV40 (dl 884, dl 885, dl 890) with deletions in this region of the genome. Attempts to isolate the putative fragments of small t from mutant-infected cells, or from cell-free systems primed with mRNA from mutant-infected cells, resulted in only low yields of the fragments. Experiments using purified SV40 mRNA in low background cell-free systems, in which large T and small t could be detected without immunoprecipitation, suggested that these low yields were accounted for by reduced amounts of mRNA coding for the shortened forms of small t present in the mutant-infected cells. Larger amounts of putative fragments of small t were produced by translation of deletion mutant cRNA (complementary RNA synthesized in vitro using purified deletion mutant DNA and E. coli RNA polymerase). Fingerprint analysis of the proteins produced showed that they contain most, if not all, of the methionine peptides common to small t and large T. Furthermore, the fragments of small t produced in response to dl 884 and dl 890 lack two methionine peptides that are present in small t but not in large T. These data provide direct evidence that the region between 0.59-0.54 map units on SV40 DNA codes for polypeptide sequences that are unique to small t, and establishes that the nucleotide sequences from the region between 0.59-0.54 map units are both a coding sequence (for small t) and an intervening sequence (for large T).  相似文献   

3.
To localize the origin-specific DNA-binding domain on the simian virus 40 tumor (T) antigen molecule, we used limited proteolysis with trypsin to generate fractional peptides for analysis. A 17,000-Mr peptide was found to be capable of binding not only to calf thymus DNA, but also specifically to the simian virus 40 origin of DNA replication. This approximately 130-amino-acid peptide was derived from the extreme N-terminus of the T antigen and represented less than one-fifth of the entire molecule. The coding sequence for this tryptic peptide was located approximately between 0.51 and 0.67 map units (excluding the intron, which maps between 0.54 and 0.59). Since the first 82 amino acids are shared between large T and small t antigens, and since the latter does not bind DNA, it can be concluded that the sequence between isoleucine 83 and approximately arginine 130 is necessary for origin-specific binding by the T antigen. We also observed that in vivo phosphorylation of the T antigen within this region completely abolished the ability of the 17,000-Mr peptide to bind DNA. This observation is consistent with the idea that DNA binding by the T antigen is regulated by posttranslational modifications.  相似文献   

4.
D I Linzer  A J Levine 《Cell》1979,17(1):43-52
SV40 infection or transformation of murine cells stimulated the production of a 54K dalton protein that was specifically immunoprecipitated, along with SV40 large T and small t antigens, with sera from mice or hamsters bearing SV40-induced tumors. The same SV40 anti-T sera immunoprecipitated a 54K dalton protein from two different, uninfected murine embryonal carcinoma cell lines. These 54K proteins from SV40-transformed mouse cells and the uninfected embryonal carcinomas cells had identical partial peptide maps which were completely different from the partial peptide map of SV40 large T antigen. An Ad2+ND4-transformed hamster cell line also expressed a 54K protein that was specifically immunoprecipitated by SV40 T sera. The partial peptide maps of the mouse and hamster 54K protein were different, showing the host cell species specificity of these proteins. The 54K hamster protein was also unrelated to the Ad2+ND4 SV40 T antigen. Analogous proteins immunoprecipitated by SV40 T sera, ranging in molecular weight from 44K to 60K, were detected in human and monkey SV40-infected or -transformed cells. A wide variety of sera from hamsters and mice bearing SV40-induced tumors immunoprecipitated the 54K protein of SV40-transformed cells and murine embryonal carcinoma cells. Antibody produced by somatic cell hybrids between a B cell and a myeloma cell (hybridoma) against SV40 large T antigen also immunoprecipitated the 54K protein in virus-infected and -transformed cells, but did not do so in the embryonal carcinoma cell lines. We conclude that SV40 infection or transformation of mouse cells stimulates the synthesis or enhances the stability of a 54K protein. This protein appears to be associated with SV40 T antigen in SV40-infected and -transformed cells, and is co-immunoprecipitated by hybridomas sera to SV40 large T antigen. The 54K protein either shares antigenic determinants with SV40 T antigen or is itself immunogenic when in association with SV40 large T antigen. The protein varies with host cell species, and analogous proteins were observed in hamster, monkey and human cells. The role of this protein in transformation is unclear at present.  相似文献   

5.
We have analyzed T antigens produced by a set of simian virus 40 (SV40) A gene deletion mutants for ATPase activity and for binding to the SV40 origin of DNA replication. Virus stocks of nonviable SV40 A gene deletion mutants were established in SV40-transformed monkey COS cells. Mutant T antigens were produced in mutant virus-infected CV1 cells. The structures of the mutant T antigens were characterized by immunoprecipitation with monoclonal antibodies directed against distinct regions of the T-antigen molecule. T antigens in crude extracts prepared from cells infected with 10 different mutants were immobilized on polyacrylamide beads with monoclonal antibodies, quantified by Coomassie blue staining, and then assayed directly for T antigen-specific ATPase activity and for binding to the SV40 origin of DNA replication. Our results indicate that the T antigen coding sequences required for origin binding map between 0.54 and 0.35 map units on the SV40 genome. In contrast, sequences closer to the C terminus of T antigen (between 0.24 and 0.20 map units) are required for ATPase activity. The presence of the ATPase activity correlated closely with the ability of the mutant viruses to replicate and to transform nonpermissive cells. The origin binding activity was retained, however, by three mutants that lacked these two functions, indicating that this activity is not sufficient to support either cellular transformation or viral replication. Neither the ATPase activity nor the origin binding activity correlated with the ability of the mutant DNA to activate silent rRNA genes or host cell DNA synthesis.  相似文献   

6.
The biochemical properties of the large T antigens encoded by simian virus 40 (SV40) mutants with deletions at DdeI sites in the SV40 A gene were determined. Mutant large T antigens containing only the first 138 to 140 amino acids were unable to bind to the SV40 origin of DNA replication as were large T antigens containing at their COOH termini 96 or 97 amino acids encoded by the long open reading frame located between 0.22 and 0.165 map units (m.u.). All other mutant large T antigens were able to bind to the SV40 origin of replication. Mutants with in-phase deletions at 0.288 and 0.243 m.u. lacked ATPase activity, but ATPase activity was normal in mutants lacking origin-binding activity. The 627-amino acid large T antigen encoded by dlA2465, with a deletion at 0.219 m.u., was the smallest large T antigen displaying ATPase activity. Mutant large T antigens with the alternate 96- or 97-amino acid COOH terminus also lacked ATPase activity. All mutant large T antigens were found in the nuclei of infected cells; a small amount of large T with the alternate COOH terminus was also located in the cytoplasm. Mutant dlA2465 belonged to the same class of mutants as dlA2459. It was unable to form plaques on CV-1p cells at 37 or 32 degrees C but could form plaques on BSC-1 monolayers at 37 degrees C but not at 32 degrees C. It was positive for viral DNA replication and showed intracistronic complementation with any group A mutant whose large T antigen contained a normal carboxyl terminus. These findings and those of others suggest that both DNA binding and ATPase activity are required for the viral DNA replication function of large T antigen, that these two activities must be located on the same T antigen monomer, and that these two activities are performed by distinct domains of the polypeptide. These domains are distinct and separable from the domain affected by the mutation of dlA2465 and indicate that SV40 large T antigen is made up of at least three separate functional domains.  相似文献   

7.
Mapping the spliced and unspliced late lytic SV40 RNAs.   总被引:63,自引:0,他引:63  
C J Lai  R Dhar  G Khoury 《Cell》1978,14(4):971-982
  相似文献   

8.
N Dyson  K Buchkovich  P Whyte  E Harlow 《Cell》1989,58(2):249-255
The association between the retinoblastoma protein (p105-RB) and either the large T antigen of SV40 or the E1A proteins of adenovirus is thought to be an important step in transformation by these viral oncogenes. E1A and large T antigen share a small region of amino acid homology that is necessary for high affinity binding with p105-RB. Mutations of this homology region were shown to reduce drastically the frequency of transformation mediated by the E1A or large T oncogenes. Previously, this small region in E1A was shown to be sufficient for interaction with a second cellular protein of 107,000 daltons (107K). Here we show that in human cells, the large T antigens of SV40 or JC virus also form complexes with 107K. Demonstration of complexes between 107K and the large T antigens of SV40 and JC virus suggests that these associations may represent another component of a common mechanism for transformation between adenoviruses and polyoma viruses.  相似文献   

9.
A E Smith  R Smith  E Paucha 《Cell》1979,18(2):335-346
In addition to large T and small t antigens, cells transformed by simian virus 40 (SV40) commonly contain other proteins which specifically immunoprecipitate with SV40 anti-T serum and which are not detected in untransformed cells. The additional tumor antigens (T-Ags) fall into two groups: those having a close structural relationship with normal SV40 T-Ags, and those unrelated to large T and small t. The latter are probably nonviral T-Ags (NVT-Ags). The NVT-Ags comprise a family of proteins of molecular weight 50,000-55,000. Fingerprint analysis shows that NVT-Ags have few if any peptides in common with large T or small t, and that they lack the amino terminal tryptic peptide and the peptides unique to small t. NVT-Ags from different species have different fingerprints, but those isolated from different transformants of the same cell line are identical. The size of NVT is unaltered in cells transformed by mutants of SV40 with deletions in the region 0.60-0.55 map units. The mRNA for NVT does not hybridize to SV40 DNA. The other forms of T-Ag isolated from transformed cells fall into three classes: shortened forms of large T (truncated large T); multiple species of T-Ag with molecular weights very similar to, but distinct from, those of normal large T (large T doublets and triplets); and elongated forms of large T (super T). These proteins all contain the normal amino terminus of SV40 T-Ags, and the truncated forms of large T lack peptides from the carboxy terminal half of large T. One species of super T (molecular weight 130,000) contains only those methionine tryptic peptides present in normal large T, although it may contain some peptides in more than one copy.  相似文献   

10.
Cell-free synthesis of simian virus 40 T-antigens.   总被引:27,自引:18,他引:9       下载免费PDF全文
  相似文献   

11.
M Kress  E May  R Cassingena    P May 《Journal of virology》1979,31(2):472-483
In addition to the virus-coded large-T and small-t antigens, two new classes of proteins were immunoprecipitated by anti-simian virus 40 (SV40) tumor serum from extracts of various SV40-transformed cell lines. These were as follows: (i) proteins (termed "super-T proteins") with an Mr higher than that of large-T antigen (86,000), which were found in many SV40-transformed cell lines derived from mouse and rat cells (super-T proteins and large-T antigen appeared to have closely related structures as judged by the Chromobead elution patterns of their methionine-labeled tryptic peptides); (ii) proteins (termed "55K proteins") with an Mr ranging from 50,000 to 60,000, which were present in all SV40-transformed cell lines examined so far, including those obtained by chromosome-mediated gene transfer. The 55K proteins were not structurally related to large-T antigens, as judged by the Chromobead elution patterns of their methionine-labeled tryptic peptides. Our data are compatible with the assumption that the 55K proteins are largely or totally cell coded.  相似文献   

12.
R G Martin  V P Setlow  C A Edwards  D Vembu 《Cell》1979,17(3):635-643
Simian virus 40 mutants and deletions between 0.54 and 0.59 map units direct the synthesis of defective 20K t antigens (Crawford et al., 1978). These deletion mutants transformed actively growing CHL cells nearly as efficently as did wild-type virus, in either the focus formation assay or the growth in soft agar assay. In contrast, when CHL cells were in a resting state during infection, the transformation frequency of the mutants relative to wild-type dropped approximately 50 fold. The presence of the phorbol ester, TPA, diminished this difference. CHL cell lines transformed by the deletion mutants and selected by the focus assay grew almost as efficiently in soft agar as lines transformed by wild-type SV40. Both produced tumors in nude mice. The function of the 20K t antigen is discussed.  相似文献   

13.
Viral nucleoprotein complexes were extracted from the nuclei of simian virus 40 (SV40)-infected TC7 cells by low-salt treatment in the absence of detergent, followed by sedimentation on neutral sucrose gradients. Two forms of SV40 nucleoprotein complexes, those containing SV40 replicative intermediate DNA and those containing SV40 (I) DNA, were separated from one another and were found to have sedimentation values of 125 and 93S, respectively. [(35)S]methioninelabeled proteins in the nucleoprotein complexes were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition to VP1, VP3, and histones, a protein with a molecular weight of 100,000 (100K) is present in the nucleoprotein complexes containing SV40 (I) DNA. The 100K protein was confirmed as SV40 100K T antigen, both by immunoprecipitation with SV40 anti-T serum and by tryptic peptide mapping. The 100K T antigen is predominantly associated with the SV40 (I) DNA-containing complexes. The 17K T antigen, however, is not associated with the SV40 (I) DNA-containing nucleoprotein complexes. The functional significance of the SV40 100K T antigen in the SV40 (I) DNA-containing nucleoprotein complexes was examined by immunoprecipitation of complexes from tsA58-infected TC7 cells. The 100K T antigen is present in nucleoprotein complexes extracted from cells grown at the permissive temperature but is clearly absent from complexes extracted from cells grown at the permissive temperature and shifted up to the nonpermissive temperature for 1 h before extraction, suggesting that the association of the 100K T antigen with the SV40 nucleoprotein complexes is involved in the initiation of SV40 DNA synthesis.  相似文献   

14.
Although the extensive family of non-H-2 histocompatibility (H) antigens provides a formidable barrier to transplantation, the origin of their encoding genes are unknown. Recent studies have demonstrated both the linkage between H genes and retroviral sequences and the ability of integrated Moloney-murine leukemia virus to encode what is operationally defined as a non-H-2 H antigen. The experiments described in this communication reveal that skin grafts from an SV40 T-antigen transgenic C57BL/6 mouse strain are rejected by coisogenic C57BL/6 recipients with a median survival time of 49 days, which is comparable to those of many previously defined non-H-2 H antigens. The specificity of this response for SV40 T-antigen was demonstrated by the identification of SV40 T-antigen-specific cytolytic T lymphocytes and antibodies in multiply-grafted recipients. Although these cytolytic T lymphocytes could detect SV40 T-antigen on syngeneic SV40-transformed fibroblasts, they neither could be stimulated by splenic lymphocytes from T-antigen transgenics nor could they lyse lymphoblast targets from T-antigen transgenics. These observations suggest a limited tissue distribution of SV40 T-antigen in these transgenics. These results confirm the role of viral genes in the determination of non-H-2 histocompatibility antigenes by the strict criteria that such antigenes stimulate (1) tissue graft rejection and (2) generation of cytolytic T lymphocytes. Furthermore, they suggest that the SV40 enhancer and promoter region can target expression of SV-40 T-antigen to skin cells of transgenic animals.  相似文献   

15.
The simian virus 40 large tumor antigen (T-ag) is found in both the nuclei (nT-ag) and plasma membranes (mT-ag) of simian virus 40-infected or -transformed cells. It is not known how newly synthesized T-ag molecules are recognized, sorted, and transported to their ultimate subcellular destinations. One possibility is that these events depend upon structural differences between nT-ag and mT-ag. To test this possibility, we compared the structures of nT-ag and mT-ag from simian virus 40-infected cells. No differences between the two forms of T-ag were detected by migration in polyacrylamide gels, by Staphylococcus aureus V8 partial proteolytic mapping of methionine- or proline-containing peptides, or by two-dimensional tryptic peptide mapping of methionine-containing peptides. The carboxy-terminal, methionine-containing tryptic peptide was identified in the two-dimensional maps and was shown to be identical in nT-ag and mT-ag. Thus, a structural basis for the recognition and differential localization of T-ags could not be demonstrated. The carboxy terminus of the T-ag encoded by mutant dlA2413 is derived from the alternate open reading frame of the simian virus 40 early region, in analogy with the theoretical early gene product, T*-ag. We used this mutant to identify peptides unique to T*-ag. None of these peptides were detected in maps of mT-ag; only wild-type T-ag-specific peptides were found. These findings suggest that T*-ag does not represent the membrane-associated form of T-ag, but that mT-ag is encoded within the same reading frame used for nT-ag.  相似文献   

16.
We have studied the effect of the SV40 T antigen on expression from human globin promoters fused to the bacterial chloramphenicol acetyltransferase (CAT) gene and compared its effect with the SV40 enhancer and the adenovirus E1A protein. We have observed that expression of p epsilon GLCAT and p beta GLCAT (the epsilon-globin or beta-globin promoter linked to the CAT gene) was significantly stimulated when cotransfected with a cloned T antigen plasmid into CV-1 cells, indicating that trans-activation of the globin promoters was mediated by SV40 T antigen. Transfection of the p beta GLCAT-SV (p beta GLCAT containing the SV40 enhancer element) into CV-1 cells resulted in a 50-60-fold increase in CAT activity as compared to p beta GLCAT (no enhancer). However, cotransfection of the p beta GLCAT-SV with the cloned T antigen resulted in an additional increase of CAT expression, which suggests that T antigen and the SV40 enhancer activate globin gene expression independently. We found that T antigen but not E1A could further stimulate the expression of an enhancer-containing plasmid in CV-1 cells; whereas E1A but not T antigen could further stimulate p epsilon GLCAT expression in COS-1 cells which constitutively express the SV40 T antigen. These results suggest that T antigen and E1A also act independently. Deletion analysis showed that the minimum sequence required for a detectable level of stimulation of the epsilon-globin promoter by T antigen is 177 bp 5' to the cap site, suggesting that the target sequences for response to T antigen do not reside in the canonical 100 bp promoter region, but rather reside in sequences further upstream, and therefore the cellular factors interacting with T antigen are not the TATA or CAT box binding proteins, but the proteins interacting with upstream regulatory sequences.  相似文献   

17.
The simian virus 40 (SV40) large T antigen was immunoprecipitated from extracts of infected monkey cells and cleaved with trypsin under conditions of mild proteolysis. The digestion generated fragments from the NH2-terminal region of T antigen which were released from the immunoprecipitates. Pulse-chase experiments showed that most of the newly made T antigen (form A) generated an NH2-terminal fragment of 17 kDa in size, whereas most of the T antigen that had aged in the cell (form C) generated a fragment of 20 kDa. An intermediate form of T antigen (form B), which generated an 18.5- kDa NH2-terminal fragment, was produced in part from form A and was converted to form C during the chase. Phosphate-labeling experiments showed that form C was the species of T antigen that incorporated the most 32P radioactivity at the NH2-terminal region, although some label was also incorporated into forms A and B. In vitro dephosphorylation of gel-purified 18.5- and 20-kDa fragments labeled with [35S]methionine increased the electrophoretic mobility of the fragments to that of 17 kDa. This signified that phosphorylation of the NH2-terminal fragments was directly responsible for their aberrant behavior in acrylamide gels. Although peptide maps of the methionine-labeled tryptic peptides of the 17-, 18.5-, and 20-kDa fragments were very similar to one another, maps of the 32P-labeled tryptic Pronase E peptides of these fragments contained qualitative and quantitative differences. Analysis of the labeled phosphoamino acids of various peptides from these fragments indicated that the 20-kDa fragment was highly phosphorylated at Ser 123 and Thr 124, whereas the 17- and 18.5-kDa fragments were mostly unphosphorylated at these sites. These experiments indicated that T antigen is phosphorylated at the NH2-terminal region in a specific stepwise process and, therefore, that this post-translational modification of T antigen is tightly regulated.  相似文献   

18.
DNA-binding region of the simian virus 40 tumor antigen.   总被引:27,自引:22,他引:5       下载免费PDF全文
The simian virus 40 (SV40) tumor (T) antigen was purified by immunoaffinity chromatography and cleaved with small amounts of trypsin, and the resulting fragments were subjected to SV40 DNA cellulose chromatography. A 44,000-molecular-weight fragment (44K fragment) from the left end of the molecule and a 30K fragment mapping from approximately Lys 131 to Lys 371 bound to the column and were eluted with 1 M NaCl. In a second series of experiments, T antigen was immunoprecipitated with hamster anti-T serum or various monoclonal antibodies and partially digested with trypsin. Fragments that were solubilized by this treatment were tested for DNA-binding activity by using an SV40 DNA fragment-binding assay. A 17K fragment which originated from the amino-terminal region of the polypeptide had no apparent binding activity in this assay. On the other hand, larger fragments (76K, 46K, and 30K) whose amino termini were mapped around Lys 131 did display DNA-binding activity. Finally, complexes consisting of SV40 DNA and T-antigen fragments were precipitated in the DNA-binding assay with monoclonal antibodies that recognize the central region of the protein; however, antibodies with specificities to the amino- or carboxy-terminal regions were inactive. These results strongly suggest that the DNA-binding region of T antigen lies approximately between Lys 131 and Lys 371, corresponding to 0.51 and 0.37 map units on the DNA.  相似文献   

19.
Simian virus 40 (SV 40) stimulated a host cell antigen in the centriolar region after infection of African green monkey kidney (AGMK) cells. The addition of puromycin and actinomycin D to cells infected with SV40 within 5 h after infection inhibited the stimulation of the host cell antigen, indicating that de novo protein and RNA syntheses that occurred within the first 5 h after infection were essential for the stimulation. Early viable deletion mutants of SV40 with deletions mapping between 0.54 and 0.59 map units on the SV40 genome, dl2000, dl2001, dl2003, dl2004, dl2005, dl2006, and dl2007, did not stimulate the centriolar antigen above the level of uninfected cells. This indicated that an intact, functional small-t protein was essential for the SV40-mediated stimulation of the host cell antigen. Our studies, using cells infected with nondefective adenovirus-SV40 hybrid viruses that lack the small-t gene region of SV40 (Ad2+ND1, Ad2+ND2, Ad2+ND3, Ad2+ND4, and Ad2+ND5), revealed that the lack of small-t gene function of SV40 could be complemented by a gene function of the adenovirus-SV40 hybrid viruses for the centriolar antigen stimulation. Thus, adenovirus 2 has a gene(s) that is analogous to the small-t gene of SV40 for the stimulation of the host cell antigen in AGMK cells.  相似文献   

20.
Replicating activity of SV40 origin-containing plasmid was tested in human cells as well as in monkey CosI cells. All the plasmids possessing SV40 ori sequences could replicate, even in the absence of SV40 T antigen, in human HL-60 and Raji cells which are expressing c-myc gene at high level. The copy numbers of the replicated plasmids in these human cells were 1/100 as high as in monkey CosI cells which express SV40 T antigen constitutively. Exactly the same plasmids as the transfected original ones were recovered from the Hirt supernatant of the transfected HL-60 cells. Furthermore, replication of the SV40 ori-containing plasmids in HL-60 cells was inhibited by anti-c-myc antibody co-transfected into the cells. These results indicate that the c-myc protein can be substituted for SV40 T antigen in SV40 DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号