首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Beggiatoa alba B18LD utilizes both nitrate and nitrite as sole nitrogen sources, although nitrite was toxic above 1 mM.B. alba coupledin vivo acetate oxidation, but not sulfide oxidation, with nitrate and nitrite reduction.B. alba could not, however, grow anaerobically with nitrate as the sole electron acceptor. Furthermore, the incorporation of acetate into macromolecules under anaerobic conditions with nitrate as the sole electron acceptor was less 10% of the incorporation with oxygen as the electron acceptor. The product of nitrate reduction byB. alba was ammonia; N2 or N2O were not produced. The nitrate reductase activity inB. alba was soluble and it utilized reduced flavins or methyl viologen and dithionite as electron donors. Pyrimidine nucleotides were not used as in vitro electron donors, either alone or with flavins in coupled assays. TheB. alba nitrate reductase activity was competitively inhibited with chlorate and was only mildly inhibited by azide and cyanide. Nitrate was not required for induction of theB. alba nitrate reductase, and neither oxygen nor ammonia repressed its activity. Thus,B. alba nitrate reductase appears to be an assimilatory nitrate reductase with unusual regulatory properties.Non-standard abbreviations MV Methyl viologen - DT dithionite - GS glutamine synthetase - GOGAT glutamine 2-oxoglutarate aminotransferase - PPO 2-diphenyloxazole - POPOP 1,4-(bis)-[2-(5-phenyloxazolyl)] benzene - TCA trichloroacetic acid - CCCP carbonylcyanidem-chlorophenylhydrazone - FCCP carbonylcyanidep-trifluoromethoxyphenylhydrazone - TTFA thenoyltrifluoroacetone - PHEN 1,10-phenanthroline - HOQNO 2-heptyl 4-hydroxyquinoline-n-oxide - 8HQ 8-hydroxyquinoline  相似文献   

2.
The regulation of the development of nitrate reductase (NR) activity in Chlamydomonas reinhardii has been compared in a wild-type strain and in a mutant (nit-A) which possesses a modified nitrate reductase enzyme that is non-functional in vivo. The modified enzyme cannot use NAD(P)H as an electron donor for nitrate reduction and it differs from wild-type enzyme in that NR activity is not inactivated in vitro by incubation with NAD(P)H and small quantities of cyanide; it is inactivated when reduced benzyl viologen or flavin mononucleotide is present. After short periods of nitrogen starvation mutant organisms contain much higher levels of terminal-NR activity than do similarly treated wild-type ones. Despite the inability of the mutant to utilize nitrate, no nitrate or nitrite was found in nitrogen-starved cultures; it is therefore concluded that the appearance of NR activity is not a consequence of nitrification. After prolonged nitrogen starvation (22 h) the NR level in the mutant is low. It increases rapidly if nitrate is then added and this increase in activity does not occur in the presence of ammonium, tungstate or cycloheximide. Disappearance of preformed NR activity is stimulated by addition of tungstate and even more by addition of ammonium. The results are interpreted as evidence for a continuous turnover of NR in cells of the mutant with ammonium both stimulating NR breakdown and stopping NR synthesis. Nitrate protects the enzyme from breakdown. Reversible inactivation of NR activity is thought to play an insignificant rôle in the mutant.Abbreviations NR nitrate reductase - BV benzyl viologen  相似文献   

3.
The molecular basis for the action of two natural inactivator proteins, isolated from rice and corn, on a purified assimilatory nitrate reductase has been examined by several physical techniques. Incubation of purified Chlorella nitrate reductase with either rice inactivator protein or corn inactivator protein results in a loss of NADH:nitrate reductase and the associated partial activity, NADH:cytochrome c reductase, but no loss in nitrate-reducing activity with reduced methyl viologen as the electron donor. The molecular weight of the reduced methyl viologen:nitrate reductase species, determined by sedimentation equilibrium in the Beckman airfuge after complete inactivation with rice inactivator protein or with corn inactivator protein, was 595,000 and 283,000, respectively, compared to a molecular weight of 376,000 for the untreated control determined under the same conditions. Two protein peaks were observed after molecular-sieve chromatography on Sephacryl S-300 of nitrate reductase inactivated by corn inactivator protein. The Stokes radii of these fragments were 68 and 24 Å, compared to a value of 81 Å for untreated nitrate reductase. The large fragment contained molybdenum and heme but no flavin, and had nitrate-reducing activity with reduced methyl viologen as electron donor. The small fragment contained FAD but had no NADH:cytochrome c reductase or nitrate-reducing activities. Molecular weights determined by sodium dodecyl sulfate-gel electrophoresis were 67,000 and 28,000 for the large and small fragments, respectively, compared to a subunit molecular weight of 99,000 determined for the untreated control. No change in subunit molecular weight of nitrate reductase after inactivation by rice inactivator protein was observed. These results indicate that rice inactivator protein acts by binding to nitrate reductase. The stoichiometry of binding is 1–2 molecules of rice inactivator protein to one tetrameric molecule of nitrate reductase. Corn inactivator protein, in contrast, acts by cleavage of a Mr 30,000 fragment from nitrate reductase which is associated with FAD. The remaining fragment is a tetramer of Mr 70,000 subunits which retains nitrate-reducing activity and contains molybdenum and heme but has no NADH:dehydrogenase activity. The action of rice inactivator protein was partially prevented by NADH and completely prevented by a combination of NADH and cyanide, while the action of corn inactivator protein was not significantly affected by these effectors.  相似文献   

4.
Sixty-five Nicotiana plumbaginifolia mutants affected in the nitrate reductase structural gene (nia mutants) have been analyzed and classified. The properties evaluated were: (a) enzyme-linked immunosorbent assay (two-site ELISA) using a monoclonal antibody as coating reagent and (b) presence of partial catalytic activities, namely nitrate reduction with artificial electron donors (reduced methyl viologen, reduced flavin mononucleotide, or reduced bromphenol blue), and cytochrome c (Cyt c) reduction with NADH. Four classes have been defined: 40 mutants fall within class 1 which includes all mutants that have no protein detectable in ELISA and no partial activities; mutants of classes 2 and 3 exhibit an ELISA-detectable nitrate reductase protein and lack either Cyt c reductase activity (class 2: fourteen mutants) or the terminal nitrate reductase activities (class 3: eight mutants) of the enzyme. Three mutants (class 4) are negative in the ELISA test, lack Cyt c reductase activity, and lack or have a very low level of reduced methyl viologen or reduced flavin mononucleotide-nitrate reductase activities; however, they retain the reduced bromphenol blue nitrate reductase activity. Variations in the degrees of terminal nitrate reductase activities among the mutants indicated that the flavin mononucleotide and methyl viologen-dependent activities were linked while the bromphenol blue-dependent activity was independent of the other two. The putative positions of the lesions in the mutant proteins and the nature of structural domains of nitrate reductase involved in each partial activity are discussed.  相似文献   

5.
B. A. Notton  R. J. Fido  G. Galfre 《Planta》1985,165(1):114-119
A set of monoclonal antibodies has been raised against NADH-nitrate reductase (NR; EC 1.6.6.1) from spinach (Spinacea oleracea L.) leaves. Antibodies were screened by enzyme-linked immunosorbent assay and by their ability to inhibit various activities of the enzyme. The six monoclonals selected (AFRC MAC 74 to 79) are all gamma globulins; four (MAC 74 to 77) inhibit all terminal donating activities (NADH-NR; flavin mononucleotide, reduced form (FMNH2)-NR; and methyl viologen, reduced form (MV)-NR) and two (MAC 78 and 79) inhibit the acceptor activities (NADH-NR, and NADH-cytochrome c reductase). MAC 74 to 77 inhibit the NADH-NR activity of crude extracts of a variety of species (mono- and dicotyledoneae) while MAC 78 and 79 are effective against spinach and marrow, but not oil-seed rape, cucumber, oats, wheat and barley.Abbreviations Cyt c Rase cytochrome c reductase - ELISA enzyme-linked immunosorbent assay - FAD(H2) flavin adenine dinucleotide (reduced form) - FMN(H2) flavin mononucleotide (reduced form) - McAb monoclonal antibody - MV methyl viologen reduced form - NR nitrate reductase  相似文献   

6.
Summary A nitrate reductase from the thermophilic acidophilic alga, Cyanidium caldarium, was studied. The enzyme utilises the reduced forms of benzyl viologen and flavins as well as both NADPH2 and NADH2 as electron donors to reduce nitrate.Heat treatment has an activating effect on the benzyl viologen (FMNH2, FADH2) nitrate reductase. At 50°C the activation of the enzyme is complete in about 20 min of exposure, whereas at higher temperatures (until 75°C) it is virtually an instantaneous phenomenon. The observed increase in activity is very low in extracts from potassium nitrate grown cells, whereas it is 5 or more fold in extracts from ammonium sulphate supplied cells. The benzyl viologen nitrate reductase is stable at 60°C and is destroyed at 75°C after 3 min; the NADPH2 nitrate reductase is destroyed at 60°C. The pH optimum for both activities was found in the range 7.8–8.2.Ammonium nitrate grown cells possess a very low level of nitrate reductase: when they are transferred to a nitrate medium a rapid synthesis of enzyme occurs. By contrast, when cells with fully induced activity are supplied with ammonia, a rapid loss of NADPH2 and benzyl viologen nitrate reductase occurs; however, activity measured with heated extracts shows that the true level of benzyl viologen nitrate reductase is as high as before ammonium addition. It is suggested that the presence of ammonia causes a rapid inactivation but no degradation of the enzyme.Cycloheximide inhibits the formation of the enzyme; the drug is without effect on the loss of nitrate reductase activity induced by ammonium. The nitrate reductase is reactivated in vivo by the removal of the ammonium, in the absence as well as in the presence of cycloheximide.  相似文献   

7.
The photoreversible nature of the regulation of nitrate reductase is one of the most interesting features of this enzyme. As well as other chemicals, NH2OH reversibly inactivates the reduced form of nitrate reductase from Ankistrodesmus braunii. From the partial activities of the enzyme, only terminal nitrate reductase is affected by NH2OH. To demonstrate that the terminal activity was readily inactivted by NH2OH, the necessary reductants of the terminal part of the enzyme had to be cleared of dithionite since this compound reacts chemically with NH2OH. Photoreduced flavins and electrochemically reduced methyl viologen sustain very effective inactivation of terminal nitrate reductase activity, even if the enzyme was previously deprived of its NADH-dehydrogenase activity. The early inhibition of nitrate reductase by NH2OH appears to be competitive versus NO3. Since NO3, as well as cyanate, carbamyl phosphate and azide (competitive inhibitors of nitrate reductase versus NO3), protect the enzyme from NH2OH inactivation, it is suggested that NH2OH binds to the nitrate active site. The NH2OH-inactivated enzyme was photoreactivated in the presence of flavins, although slower than when the enzyme was previously inactivated with CN. NH2OH and NADH concentrations required for full inactivation of nitrate reductase appear to be low enough to potentially consider this inactivation process of physiological significance.  相似文献   

8.
Studies on nitrite reductase in barley   总被引:1,自引:0,他引:1  
W. F. Bourne  B. J. Miflin 《Planta》1973,111(1):47-56
Summary Nitrite reductase from barley seedlings was purified 50–60 fold by ammonium sulphate precipitation and gel filtration. No differences were established in the characteristics of nitrite reductases isolated in this way from either leaf or root tissues. The root enzyme accepted electrons from reduced methyl viologen, ferredoxin, or an unidentified endogenous cofactor. Enzyme activity in both tissues was markedly increased by growth on nitrate. This activity was not associated with sulphite reductase activity. Microbial contamination could not account for the presence of nitrite reductase activity in roots. Nitrite reductase assayed in vitro with reduced methyl viologen as the electron donor was inhibited by 2,4-dinitrophenol but not by arsenate.Abbreviations DNP 2,4-dinitrophenol - DEAE diethyl amino ethyl  相似文献   

9.
Initial velocity studies of immunopurified spinach nitrate reductase have been performed under conditions of controlled ionic strength and pH and in the absence of chloride ions. Increased ionic strength stimulated NADH:ferricyanide reductase and reduced flavin:nitrate reductase activities and inhibited NADH:nitrate reductase, NADH:cytochrome c reductase and reduced methyl viologen:nitrate reductase activities. NADH:dichlorophenolindophenol reductase activity was unaffected by changes in ionic strength. All of the partial activities, expressed in terms of micromole 2 electron transferred per minute per nanomole heme, were faster than the overall full, NADH:nitrate reductase activity indicating that none of the partial activities included the rate limiting step in electron transfer from NADH to nitrate. The pH optimum for NADH:nitrate reductase activity was determined to be 7 while values for the various partial activities ranged from 6.5 to 7.5. Chlorate, bromate, and iodate were determined to be alternate electron acceptors for the reduced enzyme. These results indicate that unlike the enzyme from Chlorella vulgaris, intramolecular electron transfer between reduced heme and Mo is not rate limiting for spinach nitrate reductase.  相似文献   

10.
J. Diez  A. Chaparro  J. M. Vega  A. Relimpio 《Planta》1977,137(3):231-234
In the green alga Ankistrodesmus braunii, all the activities associated with the nitrate reductase complex (i.e., NAD(P)H-nitrate reductase, NAD(P)H-cytochrome c reductase and FMNH2-or MVH-nitrate reductase) are nutritionally repressed by ammonia or methylamine. Besides, ammonia or methylamine promote in vivo the reversible inactivation of nitrate reductase, but not of NAD(P)H-cytochrome c reductase. Subsequent removal of the inactivating agent from the medium causes reactivation of the inactive enzyme. Menadione has a striking stimulation on the in vivo reactivation of the inactive enzyme. The nitrate reductase activities, but not the diaphorase activity, can be inactivated in vitro by preincubating a partially purified enzyme preparation with NADH or NADPH. ADP, in the presence of Mg2+, presents a cooperative effect with NADH in the in vitro inactivation of nitrate reductase. This effect appears to be maximum at a concentration of ADP equimolecular with that of NADH.Abbreviations ADP Adenosine-5-diphosphate - AMP Adenosine-5-monophosphate - ATP Adenosine-5-triphosphate - FAD Flavin adenine dinucleotide - FMNH2 Flavin adenine mononucleotide, reduced form - GDP Guanosine-5-diphosphate - MVH Methyl viologen, reduced form - NADH Nicotinamide adenine dinucleotide, reduced form - NADPH Nicotinamide adenine dinucleotide phosphate, reduced form  相似文献   

11.
Initial velocity studies of Chlorella nitrate reductase showed that increased ionic strength stimulated NADH:nitrate reductase activity by increasing both Vmax and Km for nitrate. Examination of the effect of ionic strength on the various partial activities of nitrate reductase revealed that while NADH:ferricyanide and reduced methyl viologen:nitrate reductase activities were unaffected by ionic strength, NADH:cytochrome c and reduced flavin:nitrate reductase activities were inhibited and stimulated by increased ionic strength, respectively. Comparison of the rates for the partial activities indicated electron transfer from heme to molybdenum to be the rate-limiting step in enzyme turnover. The pH optimum for NADH:nitrate reductase activity was found to be 7.9 while values for the partial activities ranged from 5.5 to 8.1. Phosphate was found to stimulate both NADH:nitrate and reduced methyl viologen:nitrate reductase activities indicating the molybdenum center as the site of interaction.  相似文献   

12.
Effects of artificial electron donors to deliver reducing power on enzymic denitrification were investigated using nitrate reductase and nitrite reductase obtained fromOchrobactrum antropi. The activity of nitrite reductase in the soluble portion was almost the same as that in the precipitated portion of the cell extract. Nitrate removal efficiency was higher with benzyl viologen than with methyl viologen or NADH as an artificial electron donor. The turn-over numbers of nitrate and nitrite reductase were 14.1 and 1.9 μmol of nitrogen reduced/min·mg cell extracts, respectively when benzyl viologen was used as an electron donor.  相似文献   

13.
The narB gene from the cyanobacterium Synechococcus sp. PCC 7942 was cloned downstream from the LacI-regulated promoter Ptrc in the Escherichia coli vector pTrc99A, rendering plasmid pCSLM1. Addition of isopropyl--D-thiogalactoside to E. coli (pCSLM1) resulted in the parallel expression of a 76 kDa polypeptide and a nitrate reductase activity with properties identical to those known for nitrate reductase isolated from Synechococcus cells. As is the case for nitrate reductase from Synechococcus cells, either reduced methyl viologen or reduced ferredoxin could be used as an electron donor for the reduction of nitrate catalyzed by E. coli (pCSLM1) extracts. This data shows that narB is a cyanobacterial structural gene for nitrate reductase.  相似文献   

14.
Ferredoxin-glutamate synthase (EC 1.4.7.1) from Chlamydomonas reinhardii has been purified to electrophoretic homogeneity, with a specific activity of 10.4 units mg-1 protein, by a method which included chromatography on diethylaminoethyl sephacel and hydroxylapatite, and ferredoxin-sepharose affinity treatment. The enzyme is a single polypeptide chain of M r 146000 dalton which shows an absorption spectrum with maxima at 278, 377 and 437 nm, and an A276/A437 absorptivity ratio of 7.0. The anaerobic addition of dithionite results in the loss of the absorption peak at 437 nm, which is restored upon reoxidation of the enzyme with an excess of 2-oxoglutarate, alone or in the presence of glutamine. This indicates the presence in the enzyme of a flavin prosthetic group, which is functional during the catalysis. The ferredoxin-glutamate synthase can be assayed with methyl viologen, chemically reduced with dithionite, but it is unable to use reduced pyridine nucleotide. Azaserine, 6-diazo-5-oxo-norleucine, bromocresol green and p-hydroxymercuribenzoate are potent inhibitors of this activity, which, on the other hand, is stable upon heating at 45°C for 10 min.Abbreviations DEAE-sephacel diethylaminoethyl sephacel - Fd ferredoxin - GOGAT glutaniate synthase (glutamine: -ketoglutarate aminotransferase) - SDS sodium dodecyl sulfate  相似文献   

15.
Bromphenol blue, which was reduced with dithionite, was found to support nitrate reduction catalyzed by squash NADH:nitrate reductase at a rate about 5 times greater than NADH with freshly prepared enzyme and 10 times or more with enzyme having been frozen and thawed. Kinetic analysis of bromphenol blue as a substrate for squash nitrate reductase yielded apparent Km values of 60 micromolar for bromphenol blue at 10 millimolar nitrate and 500 micromolar for nitrate at 0.2 millimolar bromphenol blue. With the same preparation of enzyme the apparent Km values were 9 micromolar for NADH at 10 millimolar nitrate and 50 micromolar nitrate at 0.1 millimolar NADH. Bromphenol blue was found to be a noncompetitive inhibitor versus NADH with a Ki of 0.3 millimolar. When squash NADH:nitrate reductase activity was inactivated with p-hydroxymercuribenzoate or denatured by heating at 40°C, the bromphenol blue nitrate reductase activity was not lost. These results were taken to indicate that bromphenol blue and NADH donated electrons to nitrate reductase at different sites. When monoclonal antibodies prepared against corn and squash nitrate reductases were used to inhibit the nitrate reductase activities supported by NADH, bromphenol blue, and methyl viologen, differential inhibition was found which tended to indicate that the three electron donors were interacting with the enzyme at different sites. One monoclonal antibody prepared against squash nitrate reductase inhibited all three activities of both corn and squash nitrate reductase. It appears this antibody may bind to a highly conserved antigenic site in the nitrate binding region of the enzyme.  相似文献   

16.
We report the first partial purification of nitrous oxide reductase, a unique and labile enzyme of denitrifying bacteria. The procedure, which required anaerobic conditions throughout, resulted in a 60-fold purification relative to crude lysate in the case ofParococcus denitrificans. The molecular weight was estimated by gel exclusion chromatography to be about 85,000. The partially purified enzyme is inactivated rapidly by O2, dithionite, and mercaptoethanol and is reversibly inhibited by moderate concentrations of common salts. Up to 80% of the original activity can be reconstituted following O2 inactivation by incubating the enzyme with reduced benzyl viologen for 2 to 3 h. TheV max pH profile shows a broad maximum at pH 8. The enzyme is irreversibly retained by common anion exchangers in the range pH 7 to 8 but can be eluted in acceptable yield as one of the last components from an imidazole-based anion exchange material by means of a pH gradient. This behavior implies that nitrous oxide reductase is very acidic. Among the several peptides observed by sodium dodecyl sulfate slab electrophoresis, only two, with apparent molecular weights of 58,000 and 25,000, correlated closely with the activity of fractions eluted from the imidazole column. These two peptides together comprised about 30% of the total protein in the fractions with highest specific activity.  相似文献   

17.
Paracoccus halodenitrificans, grown anaerobically in the presence of nitrite, contained membrane and cytoplasmic nitrite reductases. When assayed in the presence of phenazine methosulfate and ascorbate, the membranebound enzyme produced nitrous oxide whereas the cytoplasmic enzyme produced nitric oxide. When both enzymes were assayed in the presence of methyl viologen and dithionite, the cytoplasmic enzyme produced ammonia. Following solubilization, the membrane-bound enzyme behaved like the cytoplasmic enzyme, producing nitric oxide in the presence of phenazine methosulfate and ascorbate, and ammonia when assayed in the presence of methyl viologen and dithionite. The cytoplasmic and membranebound enzymes were purified to essentially the same specific activity. Only a single nitrite-reductase activity was detected on electrophoretic gels and the electrophoretic behavior of both enzymes suggested they were identical. The spectral properties of both enzymes suggested they were cd-type cytochromes. These data suggest that the products of nitrite reduction by the cd-cytochrome nitrite reductase are determined by the location of the enzyme and the redox potential of the electron donor.Abbreviations PMS phenazine methosulfate - MV methyl viologen - HEPES N-2-hydroxyethylpiperazine-N-2-ethane-sulfonic acid - CHAPSO [3-(3-cholamidopropyldimethylammonia)-1-(2-hydroxy-1-propanesulfonate)] National Research Council Research Fellow  相似文献   

18.
In this study, we have purified and characterized the membrane bound nitrate reductase obtained from the denitrifying bacteria,Ochrobactrum anthropi SY509, which was isolated from soil samples.O. anthropi SY509 can grow in minimal medium using nitrate as a nitrogen source. We achieved an overall purification rate of 15-fold from the protein extracted from the membrane fraction, with a recovery of approximately 12% of activity. The enzyme exhibited its highest level of activity at pH 5.5, and the activity was increased up to 70°C. Periplasmic and cytochromic proteins, including nitrite and nitrous oxide reductase, were excluded during centrifugation and were verified using enzyme essay. Reduced methyl viologen was determined to be the most efficient electron donor among a variety of anionic and cationic dyestuffs, which could be also used as an electron donor with dimethyl dithionite. The effects of purification and storage conditions on the stability of enzyme were also investigated. The activity of the membrane-bound nitrate reductase was stably maintained for over 2 weeks in solution. To maintain the stability of enzyme, the cell was disrupted using sonication at low temperatures, and enzyme was extracted by hot water without any surfactant. The purified enzyme was stored in solution with no salt to prevent any significant losses in activity levels.  相似文献   

19.
Nitrate reductase (NR) (EC 1.6.6.2) from Chlorella variegata 211/10d has been purified by blue sepharose affinity chromatography. The enzyme can utilise NADH or NADPH for nitrate reduction with apparent K m values of 11.5 M and 14.5 M, respectively. Apparent K m values for nitrate are 0.13 mM (NADH-NR) and 0.14 mM (NADPH-NR). The diaphorase activity of the enzyme is inhibited strongly by parachloromercuribenzoic acid; NADH or NADPH protects the enzyme against this inhibition. NR proper activity of the enzyme is partially inactive after extraction and may be activated after the addition of ferricyanide. The addition of NAD(P)H and cyanide causes a reversible inactivation of the NR proper activity although preincubation with either NADH or NADH and ADP has no significant effect.Abbreviations NR Nitrate reductase - FAD Flavin-adenine dinucleotide - FMN Riboflavin 5-phosphate - p-CMB para-Chloromercuribenzoic - BV Benzyl viologen  相似文献   

20.
A range of electron-transferring agents (dyes) were screened for activity with the oxido-reductase, nitrate reductase, from either Pisum sativum or Aspergillus. Reducing equivalents could be transferred efficiently to both enzymes by methyl viologen. Pisum enzyme could also be effectively reduced by reduced Patent blue (food colouring E 131), curcumin (food colouring E 100) or, at lesser rates by Azure A. Aspergillus enzyme could be reduced at only low rates by curcumin, Patent blue and Bromophenol blue.The authors are with Biology Experts Ltd. Strandboulevarden 133. 1tv, DK-2100 Copenhagen Ø, Denmark  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号