首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double-barreled ion-exchanger based K+-selective microelectrodes (K+ ISMs) of a variety of tip diameters were used to study the dependency of ion selectivity upon tip size. The selectivity of K+ ISMs depended on tip size and barrel configuration. Within the range of tip diameters tested (approximately 0.5-6 micron) all K+ ISMs constructed of two barrels glued side by side ("figure-eight glass") exhibited sensitivity to K+ and NH4+. Figure-eight K+ ISMs with tip diameters less than 1.5 micron were not sensitive to tetramethylammonium, tetraethylammonium, or choline, whereas K+ ISMs with tip diameters greater than or equal to 1.5 micron sensed all of the quaternary amines. Tip size dependent selectivity was not present in K+ ISMs made from thick septum theta glass. The explanation for tip size dependent changes in ion selectivity is unknown but a discussion of theoretical possibilities is given.  相似文献   

2.
Significant spatial variability in NH4+, NO3- and H+ net fluxes was measured in roots of young seedlings of Douglas-fir (Pseudotsuga menziesii) and lodgepole pine (Pinus contorta) with ion-selective microelectrodes. Seedlings were grown with NH4+, NO3-, NH4NO3 or no nitrogen (N), and were measured in solutions containing one or both N ions, or no N in a full factorial design. Net NO3- and NH4+ uptake and H+ efflux were greater in Douglas-fir than lodgepole pine and in roots not exposed to N in pretreatment. In general, the rates of net NH4+ uptake were the same in the presence or absence of NO3-, and vice versa. The highest NO3- influx occurred 0-30 mm from the root apex in Douglas-fir and 0-10 mm from the apex in lodgepole pine. Net NH4+ flux was zero or negative (efflux) at Douglas-fir root tips, and the highest NH4+ influx occurred 5-20 mm from the root tip. Lodgepole pine had some NH4+ influx at the root tips, and the maximum net uptake 5 mm from the root tip. Net H+ efflux was greatest in the first 10 mm of roots of both species. This study demonstrates that nutrient uptake by conifer roots can vary significantly across different regions of the root, and indicates that ion flux profiles along the roots may be influenced by rates of root growth and maturation.  相似文献   

3.
Net fluxes of H+, K+ and Ca2+ ions from maize (Zea mays L.) isolated leaf segments were measured non-invasively using ion-selective vibrating microelectrodes (the MIFE technique). Leaf segments were isolated from the blade base, containing actively elongating cells (basal segments), and from non-growing tip regions (tip segments). Ion fluxes were measured in response to bright white light (2600 micromoles m-2 s-1) from either the leaf segments or the underlying mesophyll (after stripping the epidermis). Fluxes measured from the mesophyll showed no significant difference between basal and tip regions. In leaf segments (epidermis attached), light-induced flux kinetics of all ions measured (H+, Ca2+ and K+) were strikingly different between the two regions. It appears that epidermal K+ fluxes are required to drive leaf expansion growth, whereas in the mesophyll light-induced K+ flux changes are likely to play a charge balancing role. Light-stimulated Ca2+ influx was not directly attributable either to leaf photosynthetic performance or to leaf expansion growth. It is concluded that light-induced ion flux changes are associated with both leaf growth and photosynthesis.  相似文献   

4.
Several liquid membrane microelectrodes sensitive to bile acids (two barrel, tip diameter about 0.5 micron) are described. The results of different liquid ion exchangers such as Aliquat 336/decanol, trioctylmethylammonium/decanol, hexadecyltrimethylammonium/decanol, benzyldimethylhexadecylammonium/decanol, hexadecyltributylammonium/5% hexachlorobenzene + 0.5% bromoacetanilide in o-dichlorobenzene are compared with each other, and the better one among them is the mixture of benzyldimethylhexadecylammonium cholate/decanol with hexadecyltributylammonium taurocholate/5% hexachlorobenzene + 0.5% bromoacetanilide in o-dichlorobenzene because of its quicker response time and low drift. The calibration curves, slopes, test limits, selective coefficients, drifts, and response times of the various bile-acids-sensitive microelectrodes in different calibration solutions were demonstrated and compared with each other.  相似文献   

5.
Ca2+-selective microelectrodes   总被引:1,自引:0,他引:1  
D Ammann 《Cell calcium》1985,6(1-2):39-55
Ca2+-selective microelectrodes based on the synthetic neutral carrier ETH 1001 can be used for quantitative intracellular measurements of resting Ca2+-activities and of slowly changing Ca2+-levels (response time in the order of seconds). Microelectrodes with tip diameters greater than 0.3 micron show selectivities that yield a detection limit between 10(-8) and 10(-7) M Ca2+ in an intracellular background. The Ca2+-activity is obtained together with electrical parameters of the cell (e.g. cell membrane potential and membrane resistance or conductivity). Simultaneous monitoring of other ion-activities is accessible (double- or multi-barrelled microelectrodes). The Ca2+-determination is extremely local, i.e. it probably does not indicate an averaged cytosolic activity in every situation (e.g. localized transients).  相似文献   

6.
Calcium and proton ion fluxes were mapped at the growing apices of two hyphal organisms, the oomycete Saprolegnia ferax and the ascomycete Neurospora crassa and pseudohyphal Saccharomyces cerevisiae using self-referencing ion-selective probes. S. ferax exhibited well-defined transport zones absent in N. crassa. Ca2+ fluxes were located within 8 microm of the growing hyphal tip; the net Ca2+ flux was either inward (75% of all experiments) or outward. The inward component of the net flux was inhibited by Gd3+, known to inhibit Ca2+ permeable stretch-activated channels. Because the Ca2+ flux is located at the region of maximal hyphal expansion, exocytosis may contribute to Ca2+ efflux, in addition to the stretch-activated channel mediated influx. Maximal inward H+ flux was observed 10-30 microm behind the hyphal tip where peak mitochondria densities taper off at the onset of a vacuolation zone, presumably due to highly localized H+ cotransporter activity. By contrast, N. crassa exhibited no net Ca2+ flux and a consistently inward H+ flux (93% of all experiments) that was homogeneously distributed up to 60 microm behind the hyphal apex. Both hyphal organisms have similar tip morphology and growth rates, and are reported to have tip-high cytosolic Ca2+ gradients associated with growth. Only S. ferax exhibited tip-localized Ca2+ fluxes and a well defined H+ influx zone just behind the tip. Differences in ecological habitats and cytology--S. ferax is an aquatic organism that grows as a migrating plug of cytoplasm while N. crassa is normally terrestrial with a cytoplasm-rich mycelium and highly active cytoplasmic streaming behind the growing margin--may account for the differences in the 'architecture' of ion transport occurring during the process of tip growth. Net Ca2+ efflux and H+ influx of growing S. cerevisiae pseudohyphae were also measured but localization was not possible due to small cell size.  相似文献   

7.
We measured the concentration of Na+, K+, Ca2+, and Cl- in the aqueous subphase of the alveolar lining by puncturing the most superficial alveoli of the exposed lungs of anesthetized rabbits with ion-selective microelectrodes and a nonselective KCl microelectrode. A buffered electrolyte solution bathed the lung surface to keep it moist and warm (38 +/- 1 degrees C) and to serve as a reference for each measurement of ionic concentration. The serum and alveolar concentrations (meq/l) were Na+ 134 +/- 6 and 135 +/- 5, K+ 3.4 +/- 0.2 and 7.3 +/- 0.7, Ca2+ 3.1 +/- 0.2 and 3.2 +/- 0.4, and Cl- 106 +/- 7 and 103 +/- 5 (mean +/- SD). Only K+ was significantly different (P less than 0.001). There was a small electrical potential difference between the alveolar lumen and the pleural surface (-3.5 +/- 0.8 mV, lumen negative) that was significantly different from zero (P less than 0.001). Although it is not possible to measure ion fluxes with these techniques, the results are consistent with active transport of one or more of the ions studied.  相似文献   

8.
Using ion-selective microelectrodes, we measured the activity of H+, K+, Ca2+, and Cl- and the electrical potential both in the vacuole and in the cytoplasm of the unicellular green alga Eremosphaera viridis to obtain comparable values of the named parameters from the same object under identical conditions. The cytosol had a pH of 7.3, and activities of the other ions were 130 mM K+, 160 nM Ca2+, and 2.2 mM Cl-. We observed only small and transient light-dependent changes of the cytosolic Ca2+ activity. The vacuolar K+ activity did not differ significantly from the cytosolic one. The Ca2+ activity inside the vacuole was approximately 200 [mu]M, the pH was 5.0, and the Cl- activity was 6.2 mM. The concentrations of K+, Ca2+, and Cl- in cell extracts were measured by induction-coupled plasma spectroscopy and anion chromatography. This confirmed the vacuolar activities for K+ and Cl- obtained with ion-selective microelectrodes and indicated that approximately 60% of the vacuolar Ca2+ was buffered. The tonoplast potential was vanishingly low ([less than or equal to][plus or minus]2 mV). There was no detectable electrochemical potential gradient for K+ across the tonoplast, but there was, however, an obvious electrochemical potential gradient for Cl- (-26 mV), indicating an active accumulation of Cl- inside the vacuole.  相似文献   

9.
Using Ca2+-selective microelectrodes and fura 2-dextran ratio imaging, the cytosolic free [Ca2+] was measured in Sinapis alba root hair cells. Both methods yielded comparable results, i.e. values between 158 to 251 nM for the basal [Ca2+] of the cells and an elevated [Ca2+] of 446 to 707 nM in the tip region. The zone of elevated [Ca2+] reaches 40 to 60 [mu]m into the cell and is congruent with the region of inwardly directed Ca2+ net currents measured with an external Ca2+- selective vibrating electrode. The channel-blocker La3+ eliminates these currents, stops growth, and almost completely eliminates the cytosolic [Ca2+] gradient without affecting the basal level of the ion. Growth is also inhibited by pressure-injected dibromo-1,2-bis(o-aminophenoxy)ethane-N,N,N[prime],N[prime]-tetraacetic acid, which causes a decrease in the [Ca2+] in the tip in a concentration-dependent manner. Indole-3-acetic acid, used as a model stimulus, decreases cytosolic free [Ca2+] by 0.2 to 0.3 pCa units in the tip, but only by about 0.1 pCa unit in the shank. Nongrowing root hairs may or may not display a [Ca2+] gradient, but still reversibly respond to external stimuli such as La3+, Ca2+, or indole-3-acetic acid with changes in cytosolic free [Ca2+]. During short time periods, dicyclohexylcarbodiimide inhibition of the plasma membrane H+-ATPase, which stops growth, does not abolish the [Ca2+] gradient, nor does it change significantly the basal [Ca2+] level. We conclude that the cytosolic [Ca2+] gradient and an elevated [Ca2+] in the tip, as in other tip-growing cells, is essential for tip growth in root hairs; however, its presence does not indicate growth under all circumstances. We argue that with respect to Ca2+, tip growth regulation and responses to external signals may not interfere with each other. Finally, we suggest that the combination of the methods applied adds considerably to our understanding of the role of cytosolic free [Ca2+] in signal transduction and cellular growth.  相似文献   

10.
11.
The purpose of this study is to systematically describe the construction of pH-sensitive double-barreled microelectrodes for extracellular use. The most important advantages of these microelectrodes are as follows: the reference and the pH barrels are next to each other, and therefore the measured pH is not affected by asymmetric or slowly spreading direct current potential. The diameter of the tip of the microelectrodes is between 7 and 35 micron. These pH-sensitive microelectrodes are generally stable and Nernstian. They can be used repeatedly both in vivo and in vitro to measure tissue extracellular fluid pH. Some applications are described.  相似文献   

12.
The development of liquid-ion-exchanger microelectrodes displaying tip diameters less than or equal to 1 micron has permitted direct measurement of the transmembrane chemical and electrochemical gradients of several permeant ion species in cells of small size. We have used Cl- and H+ resins to study the intracellular Cl- activity (alpha iCl) and cell pH (pHi) in the proximal tubule of Necturus kidney. These determinations were performed in association with perfusion of peritubular capillaries by several artificial solutions, in order to assess the dependence of alpha iCl and pHi on the composition of physiologic plasma constituents and selected inhibitors. The main findings are: Intracellular chloride activity, alpha iCl, is higher than the theoretical value predicted from electrochemical equilibrium. Peritubular application of SITS resulted in a decrease of alpha iCl and increase of pHi; these observations are taken to indicate that Cl- uptake is achieved across the basolateral membrane in exchange for HCO-3 by a mechanism sensitive to SITS. Na+ removal from peritubular fluid elicited a small reduction of alpha iCl, suggesting the presence of carrier-mediated Cl--Na+ cotransport from interstitium to cell, contributing to the rise of alpha iCl above equilibrium. In conclusion, two carrier-mediated processes (Cl-/HCO-3 exchange and Cl--Na+ symport) located at the basolateral membrane of the proximal tubule may account for the establishment of alpha iCl values above equilibrium, at steady state. The physiologic role of these carriers is discussed in relation to proximal electrolyte absorption.  相似文献   

13.
Membrane trafficking and polar growth in root hairs and pollen tubes   总被引:9,自引:0,他引:9  
Root hairs and pollen tubes extend by rapid elongation that occurs exclusively at the tip. Fundamental for such local, tip-focused growth (so-called 'tip growth') is the polarization of the cytoplasm that directs secretory events to the tip, and the presence of internal gradients and transmembrane flux of ions, notably Ca2+, H+, K+, and Cl-. Electrophysiological and imaging studies using fluorescent markers have sought to link ion gradients with growth and membrane trafficking. Current models recognize membrane trafficking as fundamental to tip growth, notably its role in supplying lipid and protein to the new plasma membrane and cell wall that extend the apex of the cell, and a complementary role for endocytosis in retrieving excess membrane and in recycling various protein fractions. The current state of knowledge is reviewed here in order to highlight the major gaps in the present understanding of trafficking as it contributes to polar growth in these cells and recent results, that suggest a role for membrane trafficking in the active regulation of ion channel turnover and activity during polar tip growth, are discussed.  相似文献   

14.
'Patch-clamp' experiments in the cell-attached configuration have shown the existence of three distinct types of ion channels in the plasma membrane of Dictyostelium discoideum. Channels DI (slope conductance 11 pS) and DII (slope conductance 6 pS) promote an outward current at depolarizing voltages. A third ion channel (HI, slope conductance 3 pS) opens preferentially at hyperpolarization and promotes inward current flow. It is suggested that under physiological conditions current through the DI and DII channels is carried by K+, whereas Ca2+ may be the current carrier in the HI channel. The density of these ion channels in the membrane of D. discoideum is low: approx. 0.1/micron 2 for the DI and HI channel and 0.02/micron 2 for the DII channel. The gating properties of the ion channels appear to be complicated because openings are grouped into bursts of activity. The probability of the DI channel being in the open state increases with depolarization. The mean channel life-time is about 20 ms and voltage-independent. The burst duration increases with depolarization whereas the interburst time decreases. The minimal kinetic model accounting for the behaviour of the DI channel is a three-state model with two closed and one open state. A detailed analysis of the gating of the DII and the HI channel was prevented by their low rate of occurrence (DII) or fast inactivation (HI). The formation of a seal resistance greater than or equal to 1 G omega depends critically on the composition of the pipette solution. Examination of a series of monovalent and divalent cations as well as different organic and inorganic anions has shown that 'gigaseals' are formed only in the presence of at least 1 mM Ca2+ or Sr2+, whereas Ba2+, Mg2+ and monovalent cations (Li+, Na+, K+, Rb+, Cs+) do not support the formation of high seal resistances. Anions seem not to affect the seal formation.  相似文献   

15.
Zinc is essential to the catalytic activity of angiotensin converting enzyme. The enzyme contains one g-atom of zinc per mole of protein. Chelating agents abolish activity by removing the metal ion to yield the inactive, metal-free apoenzyme. Zinc does not stabilize protein structure since the native and apoenzymes are equally susceptible to heat denaturation. Addition of either Zn2+, Co2+, or Mn2+ to the apoenzyme generates an active metalloenzyme; Fe2+, Ni2+, Cu2+, Cd2+, and Hg2+ fail to restore activity. The activities of the metalloenzymes follow the order Zn greater than Co greater than Mn. The protein binds Zn2+ more firmly than it does Co2+ or Mn2+. Hydrolysis of the chromophoric substrate, furanacryloyl-Phe-Gly-Gly, by the active metalloenzymes is subject to chloride activation; the activation constant is not metal dependent. Metal replacement mainly affects Kcat with very little change in Km, indicating that the role of zinc is to catalyze peptide hydrolysis.  相似文献   

16.
Design of ionophores for ion-selective microsensors   总被引:1,自引:0,他引:1  
Requirements for a reliable use of liquid membrane microelectrodes are discussed in terms of stability, response time, and lifetime on the basis of membrane technological considerations. The selectivity of H+, Li+, Na+, K+, Mg2+, Ca2+, and Cl- microelectrodes is critically evaluated using the Nikolskii-Eisenman formalism. Recent progress in the design of new ionophores is presented. A novel neutral carrier-based Ca2+-selective microelectrode with a detection limit of about 5 X 10(-10) M Ca2+ at a background of 125 mM K+ has been realized. An neutral carrier-based microelectrode for H+ with extended pH range of the sample solution is now available. Promising developments in the field of Li+-, Mg2+-, and Cl--selective ionophores are discussed.  相似文献   

17.
Vesicles can be prepared from Halobacterium halobium cell envelopes, which contain properly oriented bacteriorhodopsin and which extrude H+ during illumination. The pH difference that is generated across the membranes is accompanied by an electrical potential of 90-100 mV (interior negative) and the movements of other cations. Among these is the efflux of Na+, which proceeds against its electrochemical potential. The relationship between the size and direction of the light-induced pH gradient and the rate of depletion of Na+ from the vesicles, as well as other evidence, suggest that the active Na+-extrusion is facilitated by a membrane component that exchanges H+ for Na+ with a stoichiometry greater than 1. The gradients of H+ and Na+ are thus coupled to one another. The Na+-gradient (Na+out greater than Na+in), which arises during illumination, plays a major role in energizing the active transport of amino acids.  相似文献   

18.
Electrochemical properties of Na+-selective glass microelectrodes were studied and compared with those of K+-selective glass microelectrodes. The selectivity of Na+-selective glass microelectrodes depended on the ion concentration of test solutions. With aging, resistance of Na+-selective microelectrodes increased and their selectivity for Na over K decreased. Na+-selective microelectrodes potential measured in NaCl solution remained constant with aging, while the potential measured in KCl solution decreased and became more positive. The changes in resistance and potential of Na+-selective microelectrodes may be due to the effects of the less mobile cation, i.e., H+ or K+ on the Na ion exchange in the Na-sensing region. The results indicate that Na+-selective microelectrodes must be used as soon after filling as possible. The selectivity of Na+-selective microelectrodes increased with increase of the sensitive exposed-tip length, whereas their response time became slow due to a large recessed volume, indicating requirement of an optimum exposed-tip length for intracellular applications. The changes in the properties of Na+-selective glass microelectrodes with aging contrasted with those of K+-selective glass microelectrodes in which resistance decreased and K+-selectivity increased. The K+-selective microelectrodes required aging before use for a high selectivity and low resistance. The K+-selective microelectrodes with low resistance after sufficient aging can be used without insulation to measure K+ and Na+ activities in aqueous solutions. The different properties between Na+- and K+-selective microelectrodes are understandable, because hydration of N+-selective glass is much less extensive than that of K+-selective glass.  相似文献   

19.
T Nederman  H Acker  J Carlsson 《In vitro》1983,19(6):479-488
A new method was tested for studies of penetration of substances into tumorlike tissue. The penetration of the ions K+, Cl-, and Ca2+ through several layers of tumor cells was demonstrated by using double barrelled, ion sensitive microelectrodes with extra thin tip diameters. Spheroids consisting of human glioma, U-118 MG, and human thyroid cancer, HTh-7, cells were used as models of tumor tissue. A microelectrode was inserted into the center of a spheroid. Thereafter, the concentration of the test substance was increased in the surrounding medium. The change in concentration inside the spheroid was recorded and the penetration pattern evaluated. All three types of tested ions penetrated easily through the spheroids. The K+ ions penetrated most efficiently, and the Ca2+ ions showed the slowest penetration. The Ca2+ ions penetrated somewhat more slowly in the U-118 MG spheroids (which had rather small extracellular spaces) than in the HTh-7 spheroids (which had larger extracellular spaces). Ion sensitive electrodes, which are easily available, were used in this study only to demonstrate the principle. We hope that the method described can be used for penetration studies of various substances. For example, all substances that can be detected by enzyme microelectrodes could be studied. The main advantage of the method is that the complete penetration pattern can be studied as a function of time in individual spheroids. Previously described methods require histological procedures for each analyzed penetration time.  相似文献   

20.
Two types of segments (intact leaf tissue and isolated mesophyll tissue respectively) were isolated from basal (still growing) and tip (non-growing) maize leaf regions. The leaf segments were exposed to different light qualities (blue or red light) and quantities, and net fluxes of K+, Ca2+ and H+ were measured non-invasively using ion-selective vibrating microelectrodes (the MIFE technique). A clear dose dependency of all ion flux responses on both red (RL) and blue (BL) light fluence rate was found. We provide evidence that light-induced K+ flux kinetics are different between growing and non-growing tissues and attribute this difference to the direct involvement of RL-induced K+ flux in turgor-driven leaf expansion growth controlled by the epidermis, as well as to the charge-balancing role of K+ in the leaf mesophyll. Generally, BL was much more efficient in stimulating K+ uptake in the growing basal region compared with RL. We also show a much stronger influence of RL on Ca2+ fluxes in the basal region compared with BL, which argues in favor of the importance of RL in Ca2+ signaling during leaf growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号