首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-10 is an anti-inflammatory cytokine produced in the joint in rheumatoid arthritis by macrophages and infiltrating blood lymphocytes. Regulation of its expression is poorly understood, but previous findings have suggested that physical interactions with T cells may play a role. This report investigates signalling mechanisms involved in the production of macrophage IL-10 upon interaction with fixed, cytokine-stimulated T cells (Tck). Elutriated monocytes were differentiated to macrophages by macrophage-colony-stimulating factor (M-CSF) and co-cultured with fixed T cells chronically stimulated in a cytokine cocktail of IL-2/IL-6/tumour necrosis factor (TNF)-alpha in the presence or absence of wortmannin and LY294002, inhibitors of phosphatidylinositol 3-kinase (PI3K), or of rapamycin, an inhibitor of p70 S6-kinase (p70S6K). Spontaneous IL-10 production by rheumatoid arthritis synovial-membrane mononuclear cells (RA-SMCs) and co-cultures of rheumatoid arthritis T cells (RA-Ts) and macrophages was also assessed. RA-T and Tck induction of macrophage IL-10 production was suppressed by cell separation and inhibition of PI3K and p70S6K. PI3K involvement was also shown by phosphorylation of the downstream effector protein kinase B. Spontaneous IL-10 production by RA-SMCs was also inhibited by LY294002 and depletion of the nonadherent (T-cell-enriched) fraction of the cell population. IL-10 production in RA-SMCs and M-CSF-primed macrophages, activated by interaction with Tck, is PI3K- and p70S6K-dependent.  相似文献   

2.
A D Foey  M Feldmann  F M Brennan 《Cytokine》2001,16(4):131-142
Interleukin 10 (IL-10) is an anti-inflammatory cytokine produced in the rheumatoid arthritis (RA) joint by macrophages/monocytes and infiltrating peripheral blood derived lymphocytes. Recent data suggest a role for physical cell-to-cell interactions in the production of IL-10. In this report, we have investigated the signalling mechanisms involved in IL-10 production by peripheral blood-derived macrophages upon interaction with fixed CD40L transfectants. IL-10 and tumour necrosis factor alpha (TNF-alpha) are produced by macrophage colony-stimulating factor (M-CSF)-primed monocytes/macrophages in response to CD40 ligation. The utilization of the inhibitors, wortmannin and LY294002, demonstrated a role for phosphatidylinositol 3-kinase (PI3K) whereas rapamycin demonstrated p70 S6-kinase (p70S6K) involvement in the production of IL-10 by these monocytes. The production of TNF-alpha was enhanced by wortmannin and LY294002, suggesting negative regulation by PI3K; however, it was dependent on p70S6K suggesting a PI3K-independent mechanism of p70S6K activation. One alternative pathway that activates p70S6K independently of PI3K and also differentiates between IL-10 and TNF-alpha is the p42/44 mitogen-activated protein kinase (MAPK), which regulates TNF-alpha production in a PI3K-independent manner. These observations suggest that CD40 ligation induces macrophage IL-10 and TNF-alpha production, the mechanism of which is p70S6K-dependent yet bifurcates at the level of PI3K and p42/44 MAPK.  相似文献   

3.
The aim of this study is to investigate whether PI3K (phosphatidylinositol-3-kinase) is involved in IL-1β (interleukin-1β)-induced IL-6 production in A549 (human lung adenocarcinoma epithelial cell) and human RASF (rheumatoid arthritis synovial fibroblast). PI3K inhibitor, LY294002 significantly reduced IL-1β-induced IL-6 production in A549 cells but not in RASF, indicating that IL-1β-induced IL-6 production was partially mediated by PI3Kin A549 cells but not in RASF. siRNA (small interfering RNA) of IRAK4 (IL-1 receptor-associated kinase 4) treatment decreased IRAK4 mRNA level by up to 90% in A549 cells. In this condition, IL-1β-induced increase of IL-6 mRNA and protein level was decreased by up to 93% and 70%, respectively. Furthermore, the combination of IRAK4 siRNA and LY294002 treatment decreased protein induction level of IL-6 in A549 cells compared with that of IRAK4 siRNA or LY294002 alone. These results indicate that IL-1β-induced IL-6 production in A549 cells is mediated by both PI3K and IRAK4 and suggest that involvement of PI3K in the IL-1-induced IL-6 production is cell type specific.  相似文献   

4.
Phosphatidylinositol 3'-kinase (PI 3-kinase) catalyzes the formation of 3' phosphoinositides and has been implicated in an intracellular signaling pathway that inhibits apoptosis in both neuronal and hemopoietic cells. Here, we investigated two potential downstream mediators of PI 3-kinase, the serine/threonine p70 S6-kinase (S6-kinase) and the antiapoptotic protein B cell lymphoma-2 (Bcl-2). Stimulation of factor-dependent cell progenitor (FDCP) cells with either IL-4 or insulin-like growth factor (IGF)-I induced a 10-fold increase in the activity of both PI 3-kinase and S6-kinase. Rapamycin blocked 90% of the S6-kinase activity but did not affect PI 3-kinase, whereas wortmannin and LY294002 inhibited the activity of both S6-kinase and PI 3-kinase. However, wortmannin and LY294002, but not rapamycin, blocked the ability of IL-4 and IGF-I to promote cell survival. We next established that IL-3, IL-4, and IGF-I increase expression of Bcl-2 by >3-fold. Pretreatment with inhibitors of PI 3-kinase, but not rapamycin, abrogated expression of Bcl-2 caused by IL-4 and IGF-I, but not by IL-3. None of the cytokines affected expression of the proapoptotic protein Bax, suggesting that all three cytokines were specific for Bcl-2. These data establish that inhibition of PI 3-kinase, but not S6-kinase, blocks the ability of IL-4 and IGF-I to increase expression of Bcl-2 and protect promyeloid cells from apoptosis. The requirement for PI 3-kinase to maintain Bcl-2 expression depends upon the ligand that activates the cell survival pathway.  相似文献   

5.
We previously showed that tumor necrosis factor-alpha (TNF-alpha) stimulates synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, via p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether phosphatidylinositol 3-kinase (PI3-kinase)/protein kinase B (Akt) is involved in TNF-alpha-stimulated IL-6 synthesis in MC3T3-E1 cells. TNF-alpha induced the phosphorylation of Akt depending upon time. Akt inhibitor, 1L-6-hydroxymethyl- CHIRO-inositol 2-( R)-2- O-methyl-3- O-octadecylcarbonate, significantly suppressed the TNF-alpha-stimulated IL-6 synthesis, but the inhibitory effect was partial. The phosphorylation of Akt induced by TNF-alpha was markedly attenuated by LY294002 and wortmannin, inhibitors of PI3-kinase. Wortmannin and LY294002 significantly reduce the TNF-alpha-induced IL-6 synthesis. On the contrary, the suppressive effects of Akt inhibitor, wortmannin or LY294002 on TNF-alpha-induced phosphorylation of p44/p42 MAP kinase were minor. PD98059, a specific inhibitor of MEK, had little effect on the TNF-alpha-induced phosphorylation of Akt. A combination of Akt inhibitor and PD98059 suppressed the TNF-alpha-induced IL-6 synthesis in an additive manner. These results strongly suggest that PI3-kinase/Akt plays a role in the TNF-alpha-stimulated IL-6 synthesis mainly independent of p44/p42 MAP kinase in osteoblasts.  相似文献   

6.
In this study, we investigated the effect of tea polyphenols, (-)-epigallocatechin-3-gallate or theaflavins, on UVB-induced phosphatidylinositol 3-kinase (PI3K) activation in mouse epidermal JB6 Cl 41 cells. Pretreatment of cells with these polyphenols inhibited UVB-induced PI3K activation. Furthermore, UVB-induced activation of Akt and ribosomal p70 S6 kinase (p70 S6-K), PI3K downstream effectors, were also attenuated by the polyphenols. In addition to LY294002, a PI3K inhibitor, pretreatment with a specific mitogen-activated protein/extracellular signal-regulated protein kinases (Erks) kinase 1 inhibitor, U0126, or a specific p38 kinase inhibitor, SB202190, blocked UVB-induced activation of both Akt and p70 S6-K. Pretreatment with LY294002 restrained UVB-induced phosphorylation of Erks, suggesting that in UVB signaling, the Erk pathway is mediated by PI3K. Moreover, pretreatment with rapamycin, an inhibitor of p70 S6-K, inhibited UVB-induced activation of p70 S6-K, but UVB-induced activation of Akt did not change. Interestingly, UVB-induced p70 S6-K activation was directly blocked by the addition of (-)-epigallocatechin-3-gallate or theaflavins, whereas these polyphenols showed only a weak inhibition on UVB-induced Akt activation. Because PI3K is an important factor in carcinogenesis, the inhibitory effect of these polyphenols on activation of PI3K and its downstream effects may further explain the anti-tumor promotion action of these tea constituents.  相似文献   

7.
CC chemokine receptor 1 (CCR1) has been implicated in inflammation. The present study examined the signaling mechanisms that mediate GM-CSF/IL-10-induced synergistic CCR1 protein expression in monocytic U937 cells. GM-CSF alone markedly increased both the mRNA and protein expression of CCR1. IL-10 augmented GM-CSF-induced CCR1 protein expression with no effect on mRNA expression. PD098059 and U0126 (two MEK inhibitors), and LY294002 (a PI3K inhibitor) inhibited GM-CSF/IL-10-induced CCR1 gene and protein expression. PD098059, U0126, and LY294002 also attenuated chemotaxis of GM-CSF/IL-10-primed U937 cells in response to MIP-1alpha. Immunoblotting studies show that GM-CSF alone induced ERK2 phosphorylation; whereas, IL-10 alone induced p70(S6k) phosphorylation in U937 cells. Neither cytokine when used alone induced PKB/Akt phosphorylation. Combined GM-CSF/IL-10 treatment of U937 cells induced phosphorylation of ERK2, p70(S6k), and PKB/Akt. PD098059 and U0126 completely abrogated ERK2 phosphorylation; whereas, LY294002 completely blocked PKB/Akt and p70(S6k) phosphorylation. Our findings indicate that IL-10 may potentiate GM-CSF-induced CCR1 protein expression in U937 cells via activation of PKB/Akt and p70(S6k).  相似文献   

8.
We have previously shown that interleukin (IL-)10-induced proliferation of the murine mast cell line D36, was dependent upon the activation of PI 3-kinase and p70 S6 kinase. Conversely, we were able to show that this pathway was not involved in the signal transduction pathway mediating IL-10 inhibition of pro-inflammatory cytokine release from monocytes. We have extended these studies to investigate the induction of p75 tumour necrosis factor receptor (TNF-R) shedding, another anti-inflammatory property of IL-10. Using the inhibitors of PI 3-kinase (LY294002 and wortmannin) and an inhibitor of p70 S6 kinase activation (rapamycin), we were able to show that this anti-inflammatory effect of IL-10 was not mediated by the PI 3-kinase/p70 S6 kinase pathway, indicating that another signalling cascade(s) was involved. Further studies also investigated the role of tyrosine kinases in the response to IL-10. Two distinct tyrosine kinase inhibitors, herbimycin and genistein affected the expression of TNF-R in response to IL-10 but, surprisingly, with opposite effects. However, both compounds inhibited the activation of both PI 3-kinase and p70 S6 kinase, with a concomitant inhibition of IL-10-induced proliferation. We observed that whilst tyrosine kinase activity was involved in the regulation of TNF-R expression, IL-10-induced activation of JAK kinases was not sensitive to inhibition by the tyrosine kinase inhibitors. These data suggest that multiple unknown tyrosine kinases are mediating the IL-10-induced signal transduction pathways leading to the regulation of TNF-R expression and IL-10-induced proliferation.  相似文献   

9.
Phosphatidylinositil-3 kinase (PI3K) is a heterodimer of catalytic and regulatory subunits. It is involved in various signaling pathways and key functions of the cells. The present study investigated the role of PI3K in vanadate-induced alteration in cell cycle regulation in C141 mouse epidermal cells. Vanadate caused a time- and dose-dependent increase in PI3K activity and phosphorylation of p70 S6 kinase (p70S6K) at Thr421/Ser424 and Thr389 sites. The phosphorylation at these sites was inhibited by PI3K inhibitor, LY294002, and p70S6K mutation. Vanadate promoted S phase entry and this promotion was inhibited by LY294002 and rapmycin, a p70S6K inhibitor. Vanadate-induced enhancement in S phase entry was also inhibited in transfection with dominant negative p70S6K mutant cells. The results obtained show that vanadate is able to increase PI3K activity through phosphorylation. PI3K activated p70S6K, which phosphated protein S6, and promoted S phase entry.  相似文献   

10.
Thyroid hormones affect cardiac growth and phenotype; however, the mechanisms by which the hormones induce cardiomyocyte hypertrophy remain uncharacterized. Tri-iodo-L-thyronine (T3) treatment of cultured cardiomyocytes for 24 h resulted in a 41 +/- 5% (p < 0.001) increase in [(3)H]leucine incorporation into total cellular protein. This response was abrogated by the phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin. Co-immunoprecipitation studies showed a direct interaction of cytosol-localized thyroid hormone receptor TRalpha1 and the p85alpha subunit of PI3K. T3 treatment rapidly increased PI3K activity by 52 +/- 3% (p < 0.005), which resulted in increased phosphorylation of downstream kinases Akt and mammalian target of rapamycin (mTOR). This effect was abrogated by pretreatment with wortmannin or LY294002. Phosphorylation of p70(S6K), a known target of mTOR, occurred rapidly following T3 treatment and was inhibited by rapamycin and wortmannin. In contrast, phosphorylation of the p85 variant of S6K in response to T3 was not blocked by LY294002, wortmannin, or rapamycin, thus supporting a T3-activated pathway independent of PI3K and mTOR. 40 S ribosomal protein S6, a target of p70(S6K), and 4E-BP1, a target of mTOR, were both phosphorylated within 15-25 min of T3 treatment and could be inhibited by wortmannin and rapamycin. Thus, rapid T3-mediated activation of PI3K by cytosolic TRalpha1 and subsequent activation of the Akt-mTOR-S6K signaling pathway may underlie one of the mechanisms by which thyroid hormone regulates physiological cardiac growth.  相似文献   

11.
12.
The multifunctional cytokine interleukin-6 (IL-6) regulates growth and differentiation of many cell types and induces production of acute-phase proteins in hepatocytes. Here we report that IL-6 protects hepatoma cells from apoptosis induced by transforming growth factor-beta (TGF-beta), a well known apoptotic inducer in liver cells. Addition of IL-6 blocked TGF-beta-induced activation of caspase-3 while showing no effect on the induction of plasminogen activator inhibitor-1 and p15(INK4B) genes, indicating that IL-6 interferes with only a subset of TGF-beta activities. To further elucidate the mechanism of this anti-apoptotic effect of IL-6, we investigated which signaling pathway transduced by IL-6 is responsible for this effect. IL-6 stimulation of hepatoma cells induced a rapid tyrosine phosphorylation of the p85 subunit of phosphatidylinositol 3-kinase (PI 3-kinase) and its kinase activity followed by the activation of Akt. Inhibition of PI 3-kinase by wortmannin or LY294002 abolished the protection of IL-6 against TGF-beta-induced apoptosis. A dominant-negative Akt also abrogated this anti-apoptotic effect. Dominant-negative inhibition of STAT3, however, only weakly attenuated the IL-6-induced protection. Finally, inhibition of both STAT3 and PI 3-kinase by treating cells overexpressing the dominant-negative STAT3 with LY294002 completely blocked IL-6-induced survival signal. Thus, concomitant activation of the PI 3-kinase/Akt and the STAT3 pathways mediates the anti-apoptotic effect of IL-6 against TGF-beta, with the former likely playing a major role in this anti-apoptosis.  相似文献   

13.
14.
Phosphatidylinositol (PI) 3-kinase is required for G1 to S phase cell cycle progression stimulated by a variety of growth factors and is implicated in the activation of several downstream effectors, including p70S6K. However, the molecular mechanisms by which PI 3-kinase is engaged in activation of the cell cycle machinery are not well understood. Here we report that the expression of a dominant negative (DN) form of either the p110α catalytic or the p85 regulatory subunit of heterodimeric PI 3-kinase strongly inhibited epidermal growth factor (EGF)-induced upregulation of cyclin D1 protein in NIH 3T3(M17) fibroblasts. The PI 3-kinase inhibitors LY294002 and wortmannin completely abrogated increases in both mRNA and protein levels of cyclin D1 and phosphorylation of pRb, inducing G1 arrest in EGF-stimulated cells. By contrast, rapamycin, which potently suppressed p70S6K activity throughout the G1 phase, had little inhibitory effect, if any, on either of these events. PI 3-kinase, but not rapamycin-sensitive pathways, was also indispensable for upregulation of cyclin D1 mRNA and protein by other mitogens in NIH 3T3 (M17) cells and in wild-type NIH 3T3 cells as well. We also found that an enforced expression of wild-type p110 was sufficient to induce cyclin D1 protein expression in growth factor-deprived NIH 3T3(M17) cells. The p110 induction of cyclin D1 in quiescent cells was strongly inhibited by coexpression of either of the PI 3-kinase DN forms, and by LY294002, but was independent of the Ras-MEK-ERK pathway. Unlike mitogen stimulation, the p110 induction of cyclin D1 was sensitive to rapamycin. These results indicate that the catalytic activity of PI 3-kinase is necessary, and could also be sufficient, for upregulation of cyclin D1, with mTOR signaling being differentially required depending upon cellular conditions.  相似文献   

15.
It has been reported that platelet-derived growth factor (PDGF)-BB stimulates the synthesis of interleukin (IL)-6 in osteoblasts. In the present study, we investigated whether the phosphatidylinositol 3-kinase (PI3K)/Akt is involved in the PDGF-BB-induced IL-6 synthesis in osteoblast-like MC3T3-E1 cells. PDGF-BB markedly induced the phosphorylation of Akt and GSK-3beta. Akt inhibitor, 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, significantly amplified the synthesis of IL-6 by PDGF-BB. The PDGF-BB-induced GSK-3beta phosphorylation was suppressed by the Akt inhibitor. The IL-6 synthesis stimulated by PDGF-BB was markedly enhanced by LY294002 and wortmannin, inhibitors of PI3K. Wortmannin and LY294002 suppressed the PDGF-BB-induced phosphorylation of Akt and GSK-3beta. Taken together, these results strongly suggest that PI3K/Akt negatively regulates the PDGF-BB-stimulated IL-6 synthesis in osteoblasts.  相似文献   

16.
Abstract

In rat HTC hepatoma cells overexpressing human insulin receptors, insulin stimulated glycogen synthesis by 55–70%. To study postreceptor signaling events leading to insulin-stimulated glycogen synthesis in these cells, we have employed pathway-specific chemical inhibitors such as LY294002, rapamycin and PD98059 to inhibit phosphatidylinositol-3-kinase (PI3K), p70 ribosomal S6 kinase and mitogen-activated protein kinase (MAPK) kinase/MAPK, respectively. LY294002 (50 μM) completely abolished insulin-stimulated glycogen synthesis whereas rapamycin (2–20 nM) partially inhibited it. Neither LY294002 nor rapamycin significantly affected the basal glycogen synthesis. However, PD98059 (100 μM) significantly inhibited the basal glycogen synthesis without affecting insulin-stimulated glycogen synthesis. In these cells, insulin at 100 nM decreased glycogen synthase kinase 3α (GSK3α) activity by 30–35%. LY294002, but neither rapamycin nor PD98059, abolished insulin-induced inactivation of GSK3α. These data suggest that insulin-stimulated glycogen synthesis in rat HTC hepatoma cells is mediated mainly by PI3K-dependent mechanism. In these cells, inactivation of GSK3α, downstream of PI3K, may play a role in insulin-stimulated glycogen synthesis.  相似文献   

17.
Otsuka M  Negishi Y  Aramaki Y 《FEBS letters》2007,581(2):325-330
We explored the involvement of phosphatidylinositol 3-kinase (PI3K) and ERK pathways in the production of TGF-beta1 by macrophages treated with liposomes composed of phosphatidylserine (PS-liposomes). PS-liposomes activated Akt, downstream of the PI3K signal cascade, and ERK which led to the expression of TGF-beta1. PI3K inhibitors, LY294002 and wortmannin, inhibited the activation of Akt and ERK following the treatment with PS-liposomes. These inhibitors also suppressed the production of TGF-beta1. Furthermore, PS-liposomes activated macrophages to induce TGF-beta1 expression through PS-specific receptors. These findings suggested that a PI3K-ERK signaling pathway via the PS-receptor is intimately involved in the production of TGF-beta1 which regulates macrophage functions.  相似文献   

18.
Interstitial flow in and around bone tissue is oscillatory in nature and affects the mechanical microenvironment for bone cell growth and formation. We investigated the role of oscillatory shear stress (OSS) in modulating the proliferation of human osteoblast-like MG63 cells and its underlying mechanisms. Application of OSS (0.5 ± 4 dynes/cm2) to MG63 cells induced sustained activation of phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR/p70S6K (p70S6 kinase) signaling cascades and hence cell proliferation, which was accompanied by increased expression of cyclins A and D1, cyclin-dependent protein kinases-2, -4, and -6, and bone formation-related genes (c-fos, Egr-1, and Cox-2) and decreased expression of p21CIP1 and p27KIP1. OSS-induced activation of PI3K/Akt/mTOR/p70S6K and cell proliferation were inhibited by specific antibodies or small interference RNAs of αvβ3 and β1 integrins and by dominant-negative mutants of Shc (Shc-SH2) and focal adhesion kinase (FAK) (FAK(F397Y)). Co-immunoprecipitation assay showed that OSS induces sustained increases in association of Shc and FAK with αvβ3 and β1 integrins and PI3K subunit p85, which were abolished by transfecting the cells with FAK(F397Y) or Shc-SH2. OSS also induced sustained activation of ERK, which was inhibited by the specific PI3K inhibitor LY294002 and was required for OSS-induced activation of mTOR/p70S6K and proliferation in MG63 cells. Our findings provide insights into the mechanisms by which OSS induces osteoblast-like cell proliferation through activation of αvβ3 and β1 integrins and synergistic interactions of FAK and Shc with PI3K, leading to the modulation of downstream ERK and Akt/mTOR/p70S6K pathways.  相似文献   

19.
The mechanism by which lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA) induces production of proinflammatory cytokines in murine macrophages, and the role of phosphatidylinositol 3-kinase (PI3-kinase) have not been well investigated. Activation of nuclear factor κB (NF-κB) is initiated by the phosphorylation of the inhibitory subunit, IκB, which targets IκB for degradation and leads to the release of active NF-κB. In this study we demonstrate that 2- (4-morpholinyl)-8-phenylchromone (LY294002), which inhibits PI3-kinase, specifically inhibited degradation of IκBα in RAW264.7 cells stimulated with interferon-γ (IFN-γ) plus LPS or IFN-γ plus PMA. To elucidate the importance of this activity in RAW264.7 cells, we examined tumor necrosis factor-α (TNF-α) and interleukin IL)-6 production in the activated cells. Pretreatment of the cells with LY294002 resulted in the inhibition of TNF-α and IL-6 production in RAW264.7 cells stimulated with IFN-γ plus LPS or IFN-γ plus PMA. Furthermore, LY294002 inhibited the production of nitric oxide NO) in RAW264.7 cells stimulated with IFN-γ plus LPS or IFN-γ plus PMA. LY294002 also inhibited inducible NO synthase (iNOS) mRNA expression in the activated RAW264.7 cells. In conclusion, the present results suggest that PI3-kinase is involved in the signal transduction pathway responsible for LPS- or PMA-mediated TNF-α and IL-6 production, and that LY294002 inhibits NO generation through blocking the degradation of IκBα in activated RAW264.7 cells. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
为研究佛波酯 (PMA)和胰岛素在蛋白质合成中的信号传递 ,应用激酶活性测定和Western印迹等方法 ,分别检测mTOR(mammaliantargetofrapamycin)特异性抑制剂rapamycin或磷脂酰肌醇 3激酶 (PI3K)的特异性抑制剂LY2 94 0 0 2预处理、PMA或胰岛素处理的血清饥饿的中国仓鼠肺成纤维细胞 (CHL)中p70S6激酶 (p70S6K)和蛋白激酶B(PKB)的活性及表达 .结果显示 ,PMA或胰岛素刺激促进p70S6K的活化和表达 .而rapamycin预处理可阻断PMA和胰岛素对p70S6K的激活作用 ,表明PMA和胰岛素可能是通过mTOR 依赖性途径激活p70S6K .结果还显示 ,胰岛素刺激促进PKB的活化和表达 ,而PMA对PKB的活性和表达无影响 .LY2 94 0 0 2预处理可阻断胰岛素对p70S6K和PKB的激活作用 ,但不能抑制PMA刺激引起的p70S6K的活化 .表明胰岛素和PMA介导p70S6K活化的信号途径有所不同 ,胰岛素介导p70S6K的活化可能依赖于PI3K途径 ,而PMA介导p70S6K的活化不通过PI3K途径  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号