首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by a chronic relapsing-remitting joint inflammation. Perturbations in the balance between CD4?+?T cells producing IL-17 and CD4?+?CD25highFoxP3?+?Tregs correlate with irreversible bone and cartilage destruction in RA. APL1 is an altered peptide ligand derived from a CD4+ T-cell epitope of human HSP60, an autoantigen expressed in the inflamed synovium, which increases the frequency of CD4?+?CD25highFoxP3+ Tregs in peripheral blood mononuclear cells from RA patients. The aim of this study was to evaluate the suppressive capacity of Tregs induced by APL1 on proliferation of effector CD4+ T cells using co-culture experiments. Enhanced Treg-mediated suppression was observed in APL1-treated cultures compared with cells cultured only with media. Subsequent analyses using autologous cross-over experiments showed that the enhanced Treg suppression in APL1-treated cultures could reflect increased suppressive function of Tregs against APL1-responsive T cells. On the other hand, APL1-treatment had a significant effect reducing IL-17 levels produced by effector CD4+ T cells. Hence, this peptide has the ability to increase the frequency of Tregs and their suppressive properties whereas effector T cells produce less IL-17. Thus, we propose that APL1 therapy could help to ameliorate the pathogenic Th17/Treg balance in RA patients.  相似文献   

2.
Bone morphogenetic protein-7 (BMP-7) regulates cartilage metabolism and promotes matrix synthesis. However, the effect of BMP-7 on inflammatory arthritis remains unknown. We investigated the effect and mechanism of exogenous BMP-7 on cartilage and synovium in vivo in rat zymosan-induced arthritis. Zymosan was injected into the left knees of Wistar rats. Phosphate-buffered saline or BMP-7 at 10, 100, or 1000 ng per joint was injected into the left knee every 2 days. Normal joints acted as normal controls. The knee joints were analyzed histologically and immunohistologically at 14 days. Joint swelling was evaluated by measuring the transverse diameter of the knee joints. Synovial lysates were collected, and the concentrations of interleukin-1β (IL-1β), IL-6, and IL-10 were measured by enzyme-linked immunosorbent assay. Intra-articular injection of zymosan resulted in acute inflammation and was followed by cartilage degeneration. Local administrations of BMP-7 inhibited this loss of cartilage matrix in a dose-dependent manner. Immunohistochemical analysis demonstrated enhanced type II collagen levels in cartilage and enhanced BMP-7 levels in cartilage and synovium after exogenous BMP-7 treatment. Joint swelling and cell infiltration into synovium were significantly reduced by BMP-7 injections. Administration of BMP-7 decreased IL-1β production significantly and increased IL-10 production in the synovium. Thus, intra-articular injections of BMP-7 had a protective effect on cartilage degeneration in the inflammatory arthritis model by enhancing levels of BMP-7 in cartilage and suppressing the production of IL-1β in synovium.  相似文献   

3.
Rheumatoid arthritis is a chronic inflammatory joint disease, leading to cartilage and bone destruction. In this study, we investigated the effects of local IL-4 application, introduced by a recombinant human type 5 adenovirus vector, in the knee joint of mice with collagen-induced arthritis. One intraarticular injection with an IL-4-expressing virus caused overexpression of IL-4 in the mouse knee joint. Enhanced onset and aggravation of the synovial inflammation were found in the IL-4 group. However, despite ongoing inflammation, histologic analysis showed impressive prevention of chondrocyte death and cartilage erosion. In line with this, chondrocyte proteoglycan synthesis was enhanced in the articular cartilage. This was quantified with ex vivo 35S-sulfate incorporation in patellar cartilage and confirmed by autoradiography on whole knee joint sections. Reduction of cartilage erosion was further substantiated by lack of expression of the stromelysin-dependent cartilage proteoglycan breakdown neoepitope VDIPEN in the Ad5E1 mIL-4-treated knee joint. Reduced metalloproteinase activity was also supported by markedly diminished mRNA expression of stromelysin-3 in the synovial tissue. Histologic analysis revealed marked reduction of polymorphonuclear cells in the synovial joint space in the IL-4-treated joints. This was confirmed by immunolocalization studies on knee joint sections using NIMP-R14 staining and diminished mRNA expression of macrophage-inflammatory protein-2 in the synovium tissue. mRNA levels of TNF-alpha and IL-1beta were suppressed as well, and IL-1beta and nitric oxide production by arthritic synovial tissue were strongly reduced. Our data show an impressive cartilage-protective effect of local IL-4 and underline the feasibility of local gene therapy with this cytokine in arthritis.  相似文献   

4.
Interleukin (IL-)17 is a T cell-derived pro-inflammatory cytokine produced by RA synovium. We studied the role of IL-17 in the synovium cytokine network to determine whether it can influence the inflammatory and destructive pattern characteristic of RA. Herein, we investigated whether the production and action of MMP-1 and its inhibitor TIMP-1 could be modulated by IL-17 in the presence of pro-inflammatory cytokine (IL-1) and anti-inflammatory cytokines (IL-4, IL-13, IL-10). The effect of the blockade of endogenous IL-17 on the secretion of MMP-1 and TIMP-1 by RA synovium and matrix destruction was also studied. IL-17 increased the spontaneous production of MMP-1 by synoviocytes five-fold. IL-1 was more potent since it increased MMP-1 production nine-fold. Addition of IL-4, IL-13 and IL-10 to synoviocyte cultures reduced the spontaneous production of MMP-1 and induced TIMP-1 production by synoviocytes stimulated with IL-17 or/and IL-1beta. In the presence of anti-IL-17 blocking mAb, MMP-1 production and collagenase activity by RA synovium was reduced by 50% and associated with a 50% reduction in type I collagen C-telopeptide fragments (CTX) released in the supernatants, demonstrating the direct contribution of IL-17 in destruction. IL-17 and its producing T cells appear to contribute to the inflammatory process involved in the rheumatoid lesion.  相似文献   

5.
Rheumatoid arthritis (RA) is one of the inflammatory joint diseases in a heterogeneous group of disorders that share features of destruction of the extracellular matrices of articular cartilage and bone. The underlying disturbance in immune regulation that is responsible for the localized joint pathology results in the release of inflammatory mediators in the synovial fluid and synovium that directly and indirectly influence cartilage homeostasis. Analysis of the breakdown products of the matrix components of joint cartilage in body fluids and quantitative imaging techniques have been used to assess the effects of the inflammatory joint disease on the local remodeling of joint structures. The role of the chondrocyte itself in cartilage destruction in the human rheumatoid joint has been difficult to address but has been inferred from studies in vitro and in animal models. This review covers current knowledge about the specific cellular and biochemical mechanisms that account for the disruption of the integrity of the cartilage matrix in RA.  相似文献   

6.
T cell IL-17 displays proinflammatory properties and is expressed in the synovium of patients with rheumatoid arthritis. Its contribution to the arthritic process has not been identified. Here, we show that blocking of endogenous IL-17 in the autoimmune collagen-induced arthritis model results in suppression of arthritis. Also, joint damage was significantly reduced. In contrast, overexpression of IL-17 enhanced collagen arthritis. Moreover, adenoviral IL-17 injected in the knee joint of type II collagen-immunized mice accelerated the onset and aggravated the synovial inflammation at the site. Radiographic and histologic analysis showed markedly increased joint destruction. Elevated levels of IL-1beta protein were found in synovial tissue. Intriguingly, blocking of IL-1alphabeta with neutralizing Abs had no effect on the IL-17-induced inflammation and joint damage in the knee joint, implying an IL-1 independent pathway. This direct potency of IL-17 was underscored in the unabated IL-17-induced exaggeration of bacterial cell wall-induced arthritis in IL-1beta(-/-) mice. In conclusion, this data shows that IL-17 contributes to joint destruction and identifies an IL-1-independent role of IL-17. These findings suggest IL-17 to be a novel target for the treatment of destructive arthritis and may have implications for tissue destruction in other autoimmune diseases.  相似文献   

7.
Surgical synovectomy to remove the inflammatory synovium can temporarily ameliorate rheumatoid inflammation and delay the progress of joint destruction. An efficient medically induced programmed cell death (apoptosis) in the rheumatoid synovium might play a role similar to synovectomy but without surgical tissue damage. Gene transfer of Fas ligand (FasL) has increased the frequency of apoptotic cells in mouse and rabbit arthritic synovium. In this study, we investigated whether repeated FasL gene transfer could remove human inflammatory synovial tissue in situ and function as a molecular synovectomy. Briefly, specimens of human synovium from joint replacement surgeries and synovectomies of rheumatoid arthritis (RA) patients were grafted subcutaneously into male C.B-17 severe combined immunodeficiency (SCID) mice. Injections of a recombinant FasL adenovirus (Ad-FasL) into the grafted synovial tissue at the dosage of 10(11) particles per mouse were performed every two weeks. Three days after the fifth virus injection, the mice were euthanized by CO2 inhalation and the human synovial tissues were collected, weighed and further examined. Compared to the control adenovirus-LacZ (Ad-LacZ) and phosphate buffered saline (PBS) injected RA synovium, the Ad-FasL injected RA synovium was dramatically reduced in size and weight (P < 0.005). The number of both synoviocytes & mononuclear cells was significantly reduced. Interestingly, an approximate 15-fold increased frequency of apoptotic cells was observed in RA synovium three days after Ad-FasL injection, compared with control tissues. In summary, our in vivo investigation of gene transfer to human synovium in SCID mice suggests that repeated intra-articular gene transfer of an apoptosis inducer, such as FasL, may function as a 'gene scalpel' for molecular synovectomy to arrest inflammatory synovium at an early stage of RA.  相似文献   

8.
Oncostatin M is a pro-inflammatory cytokine previously shown to promote marked cartilage destruction both in vitro and in vivo when in combination with IL-1 or tumour necrosis factor alpha. However, the in vivo effects of these potent cytokine combinations on bone catabolism are unknown. Using adenoviral gene transfer, we have overexpressed oncostatin M in combination with either IL-1 or tumour necrosis factor alpha intra-articularly in the knees of C57BL/6 mice. Both of these combinations induced marked bone damage and markedly increased tartrate-resistant acid phosphatase-positive multinucleate cell staining in the synovium and at the front of bone erosions. Furthermore, there was increased expression of RANK and its ligand RANKL in the inflammatory cells, in inflamed synovium and in articular cartilage of knee joints treated with the cytokine combinations compared with expression in joints treated with the cytokines alone or the control. This model of inflammatory arthritis demonstrates that, in vivo, oncostatin M in combination with either IL-1 or tumour necrosis factor alpha represents cytokine combinations that promote bone destruction. The model also provides further evidence that increased osteoclast-like, tartrate-resistant acid phosphatase-positive staining multinucleate cells and upregulation of RANK/RANKL in joint tissues are key factors in pathological bone destruction.  相似文献   

9.
During immune-complex-mediated arthritis (ICA), severe cartilage destruction is mediated by Fcγ receptors (FcγRs) (mainly FcγRI), cytokines (e.g. IL-1), and enzymes (matrix metalloproteinases (MMPs)). IL-13, a T helper 2 (Th2) cytokine abundantly found in synovial fluid of patients with rheumatoid arthritis, has been shown to reduce joint inflammation and bone destruction during experimental arthritis. However, the effect on severe cartilage destruction has not been studied in detail. We have now investigated the role of IL-13 in chondrocyte death and MMP-mediated cartilage damage during ICA. IL-13 was locally overexpressed in knee joints after injection of an adenovirus encoding IL-13 (AxCAhIL-13), 1 day before the onset of arthritis; injection of AxCANI (an empty adenoviral construct) was used as a control. IL-13 significantly increased the amount of inflammatory cells in the synovial lining and the joint cavity, by 30% to 60% at day 3 after the onset of ICA. Despite the enhanced inflammatory response, chondrocyte death was diminished by two-thirds at days 3 and 7. The mRNA level of FcγRI, a receptor shown to be crucial in the induction of chondrocyte death, was significantly down-regulated in synovium. Furthermore, MMP-mediated cartilage damage, measured as neoepitope (VDIPEN) expression using immunolocalization, was halved. In contrast, mRNA levels of MMP-3, -9, -12, and -13 were significantly higher and IL-1 protein, which induces production of latent MMPs, was increased fivefold by IL-13. This study demonstrates that IL-13 overexpression during ICA diminished both chondrocyte death and MMP-mediated VDIPEN expression, even though joint inflammation was enhanced.  相似文献   

10.
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, leading to cartilage and bone destruction. We investigated whether the electrotransfer of IL-4 DNA could regulate the disease progress of murine collagen-induced arthritis (CIA). The maximum serum level of mIL-4 was measured by 340 pg/ml on day 1 following DNA transfer. The onset of severe CIA and the degree of synovitis and cartilage erosion were significantly reduced in mice treated with IL-4 DNA (P<0.05). The beneficial effect of IL-4 gene transfer lasted for at least 17 days subsequent to treatment. The expression of IL-1beta was considerably decreased in the paws by IL-4 DNA transfer (P<0.01). On the contrary, the ratio of TIMP2 to MMP2 significantly increased in the IL-4 DNA-treated group (P<0.01). These data demonstrated that electroporation-mediated gene transfer could provide a new approach as an IL-4 therapy for autoimmune arthritis.  相似文献   

11.
Rheumatoid arthritis (RA) is an autoimmune synovitis characterized by the formation of pannus and the destruction of cartilage and bone in the synovial joints. Although immune cells, which infiltrate the pannus and promote inflammation, play a prominent role in the pathogenesis of RA, other cell types also contribute. Proliferation of synovial fibroblasts, for example, underlies the formation of the pannus, while proliferation of endothelial cells results in neovascularization, which supports the growth of the pannus by supplying it with nutrients and oxygen. The synovial fibroblasts also promote inflammation in the synovium by producing cytokines and chemokines. Finally, osteoclasts cause the destruction of bone. In this study, we show that erlotinib, an inhibitor of the tyrosine kinase epidermal growth factor receptor (EGFR), reduces the severity of established collagen-induced arthritis, a mouse model of RA, and that it does so by targeting synovial fibroblasts, endothelial cells, and osteoclasts. Erlotinib-induced attenuation of autoimmune arthritis was associated with a reduction in number of osteoclasts and blood vessels, and erlotinib inhibited the formation of murine osteoclasts and the proliferation of human endothelial cells in vitro. Erlotinib also inhibited the proliferation and cytokine production of human synovial fibroblasts in vitro. Moreover, EGFR was highly expressed and activated in the synovium of mice with collagen-induced arthritis and patients with RA. Taken together, these findings suggest that EGFR plays a central role in the pathogenesis of RA and that EGFR inhibition may provide benefits in the treatment of RA.  相似文献   

12.
Rheumatoid arthritis (RA) is a chronic, persistent inflammatory joint disease with systemic involvement that affects about 1% of the world’s population, that ultimately leads to the progressive destruction of joint. Effective medical treatment for joint destruction in RA is lacking because the knowledge about molecular mechanisms leading to joint destruction are incompletely understood. It has been confirmed that cytokine-mediated immunity plays a crucial role in the pathogenesis of various autoimmune diseases including RA. Recently, IL-17 was identified, which production by Th17 cells. IL-17 has proinflammatory properties and may promote bone and joint damage through induction of matrix metalloproteinases and osteoclasts. In mice, intra-articular injection of IL-17 into the knee joint results in joint inflammation and damage. In addition, it has been shown that blocking IL-17/IL-17R signaling is effective in the control of rheumatoid arthritis symptoms and in the prevention of joint destruction. In this article, we will briefly discuss the biological features of IL-17/IL-17R and summarize recent advances on the role of IL-17/IL-17R in the pathogenesis and treatment of joint destruction in RA.  相似文献   

13.
1. The destruction of articular cartilage in human rheumatoid and other arthritides is the result of diverse mechanical, inflammatory and local cellular factors. A tissue-culture model for studying cartilage-synovial interactions that may be involved in the final common pathway of joint destruction is described. 2. Matrix breakdown was studied in vitro by using bovine nasal-cartilage discs cultivated in contact with synovium. Synovia were obtained from human and animal sources. Human tissue came from patients with ;classical' rheumatoid arthritis, and animal tissue from rabbits with antigen-induced arthritis. 3. Cartilage discs increased their proteoglycan content 2-3-fold during 8 days in culture. Proteoglycan was also released into culture medium, approx. 70% arising from cartilage breakdown. 4. Synovial explants from human rheumatoid and rabbit antigen-induced arthritis produced equivalent stimulation of proteoglycan release. After an initial lag phase, the breakdown rate rose abruptly to a maximum, resulting in a 2-fold increase of proteoglycan accumulation in culture medium after 8-10 days. 5. High-molecular-weight products shed into culture media were characterized chromatographically and by differential enzymic digestion. Proteoglycan-chondroitin sulphate accounted for 90% of the released polyanion, and its partial degradation in the presence of synovial explants was consistent with limited proteolytic cleavage. 6. Rheumatoid synovium applied to dead cartilage increased the basal rate of proteoglycan release. Living cartilage was capable of more extensive autolysis, even in the absence of synovium. However, optimal proteoglycan release required the interaction of living synovium with live cartilage. These findings support the view that a significant component of cartilage breakdown may be chondrocyte-mediated.  相似文献   

14.
Arthritis was induced by injecting cationic amidated bovine serum albumin (aBSA) (pI approximately 9.2) into the knee joint of immunized guinea pigs and the mechanisms of articular cartilage destruction were studied morphologically and biochemically. Marked synovitis associated with polymorphonuclear leukocyte (PML) infiltration occurred within 1 day of the challenge. Articular cartilage infiltrated by PMLs was almost completely destroyed after 2 weeks. During the initial destructive process, proteoglycans were depleted from the cartilage and later collagen fibers disappeared. Granulation tissue growing in the inflamed synovium and bone marrow replaced the destroyed cartilage and joint cavity and formed fibrous scar tissue (fibrous ankylosis) by 8 weeks. Subsequently, the knee joints developed cartilagenous ankylosis by 12 weeks and finally bony ankylosis at 28 weeks. Autoradiography using 125I-aBSA and immunofluorescence studies for immunoglobulin (IgG) and complement (C3) demonstrated that the antigen is trapped in all zones of the articular cartilage and serves as a trigger for immune complex formation. Significantly increased neutral proteinase activities against substrates of proteoglycan subunits, [3H]carboxymethylated transferrin and L-pyroglutamyl-L-prolyl-L-valine-paranitroanilide were detected in homogenates of the synovium and cartilage from arthritic knee joints 1 and 2 weeks after induction. Inhibitor studies and pH curves suggested that the proteinase is leukocyte elastase. Measurable amounts of gelatinolytic activity, detected by activation with 4-aminophenylmercuric acetate and inhibited with EDTA, were also present in the same samples, but there was no detectable collagenase activity. The data on SDS-gelatin substrate gel showed that the proteinase is gelatinase derived from PMLs. These results suggest that in aBSA-induced arthritis, elastase and gelatinase from PMLs invading articular cartilage may play important roles in cartilage destruction.  相似文献   

15.
Oncostatin M is a pro-inflammatory cytokine previously shown to promote marked cartilage destruction both in vitro and in vivo when in combination with IL-1 or tumour necrosis factor alpha. However, the in vivo effects of these potent cytokine combinations on bone catabolism are unknown. Using adenoviral gene transfer, we have overexpressed oncostatin M in combination with either IL-1 or tumour necrosis factor alpha intra-articularly in the knees of C57BL/6 mice. Both of these combinations induced marked bone damage and markedly increased tartrate-resistant acid phosphatase-positive multinucleate cell staining in the synovium and at the front of bone erosions. Furthermore, there was increased expression of RANK and its ligand RANKL in the inflammatory cells, in inflamed synovium and in articular cartilage of knee joints treated with the cytokine combinations compared with expression in joints treated with the cytokines alone or the control. This model of inflammatory arthritis demonstrates that, in vivo, oncostatin M in combination with either IL-1 or tumour necrosis factor alpha represents cytokine combinations that promote bone destruction. The model also provides further evidence that increased osteoclast-like, tartrate-resistant acid phosphatase-positive staining multinucleate cells and upregulation of RANK/RANKL in joint tissues are key factors in pathological bone destruction.  相似文献   

16.
Macrophage inflammatory protein (MIP)-3alpha is a chemokine involved in the migration of T cells and immature dendritic cells. To study the contribution of proinflammatory cytokines and chemokines to the recruitment of these cells in rheumatoid arthritis (RA) synovium, we looked at the effects of the monocyte-derived cytokines IL-1beta and TNF-alpha and the T cell-derived cytokine IL-17 on MIP-3alpha production by RA synoviocytes. Addition of IL-1beta, IL-17, and TNF-alpha induced MIP-3alpha production in a dose-dependent manner. At optimal concentrations, IL-1beta (100 pg/ml) was much more potent than IL-17 (100 ng/ml) and TNF-alpha (100 ng/ml). When combined at lower concentrations, a synergistic effect was observed. Conversely, the anti-inflammatory cytokines IL-4 and IL-13 inhibited MIP-3alpha production by activated synoviocytes, but IL-10 had no effect. Synovium explants produced higher levels of MIP-3alpha in RA than osteoarthritis synovium. MIP-3alpha-producing cells were located in the lining layer and perivascular infiltrates in close association with CD1a immature dendritic cells. Addition of exogenous IL-17 or IL-1beta to synovium explants increased MIP-3alpha production. Conversely, specific soluble receptors for IL-1beta, IL-17, and TNF-alpha inhibited MIP-3alpha production to various degrees, but 95% inhibition was obtained only when the three receptors were combined. Similar optimal inhibition was also obtained with IL-4, but IL-13 and IL-10 were less active. These findings indicate that interactions between monocyte and Th1 cell-derived cytokines contribute to the recruitment of T cells and dendritic cells by enhancing the production of MIP-3alpha by synoviocytes. The inhibitory effect observed with cytokine-specific inhibitors and Th2 cytokines may have therapeutic applications.  相似文献   

17.
A current challenge in mesenchymal stem cell (MSC)‐based cartilage repair is to solve donor and tissue‐dependent variability of MSC cultures and to prevent chondrogenic cells from terminal differentiation like in the growth plate. The aim of this study was to select the best source for MSC which could promise stable cartilage formation in the absence of hypertrophy and ectopic in vivo mineralization. We hypothesized that MSC from synovium are superior to bone marrow‐ and adipose tissue‐derived MSC since they are derived from a joint tissue. MSC were characterized by flow cytometry. MSC pellets were cultured under chondrogenic conditions and differentiation was evaluated by histology, gene expression analysis, and determination of alkaline phosphatase activity (ALP). After chondrogenic induction, pellets were transplanted subcutaneously into SCID mice. MSC from bone marrow, adipose tissue, and synovium revealed similar COL2A1/COL10A1 mRNA levels after chondrogenic induction and were positive for collagen‐type‐X. Bone marrow‐derived and adipose tissue‐derived MSC showed significantly higher ALP activity than MSC from synovium. Low ALP‐activity before transplantation of pellets correlated with marginal calcification of explants. Surprisingly, non‐mineralizing transplants specifically lost their collagen‐type II, but not collagen‐type I deposition in vivo, or were fully degraded. In conclusion, the lower donor‐dependent ALP activation and reduced mineralization of synovium‐derived heterotopic transplants did not lead to stable ectopic cartilage as known from articular chondrocytes, but correlated with fibrous dedifferentation or complete degeneration of MSC pellets. This emphasizes that beside appropriate induction of differentiation, locking of MSC in the desired differentiation state is a major challenge for MSC‐based repair strategies. J. Cell. Physiol. 219: 219–226, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
Overexpression of interleukin (IL-)17 has recently been shown to be associated with a number of pathological conditions. Because IL-17 is found at high levels in the synovial fluid surrounding cartilage in patients with inflammatory arthritis, the present study determined the direct effect of IL-17 on articular cartilage. As shown herein, IL-17 was a direct and potent inducer of matrix breakdown and an inhibitor of matrix synthesis in articular cartilage explants. These effects were mediated in part by leukemia inhibitory factor (LIF), but did not depend on interleukin-1 activity. The mechanism whereby IL-17 induced matrix breakdown in cartilage tissue appeared to be due to stimulation of activity of aggrecanase(s), not matrix metalloproteinase(s). However, IL-17 upregulated expression of matrix metalloproteinase(s) in chondrocytes cultured in monolayer. In vivo, IL-17 induced a phenotype similar to inflammatory arthritis when injected into the intra-articular space of mouse knee joints. Furthermore, a related protein, IL-17E, was found to have catabolic activity on human articular cartilage. This study characterizes the mechanism whereby IL-17 acts directly on cartilage matrix turnover. Such findings have important implications for the treatment of degenerative joint diseases such as arthritis.  相似文献   

19.
The synovium from patients with rheumatoid arthritis (RA) and LEW/N rats with streptococcal cell wall (SCW) arthritis, an experimental model resembling RA, is characterized by massive proliferation of synovial connective tissues and invasive destruction of periarticular bone and cartilage. Since heparin binding growth factor (HBGF)-1, the precursor of acidic fibroblast growth factor (FGF), is a potent angiogenic polypeptide and mitogen for mesenchymal cells, we sought evidence that it was involved in the synovial pathology of RA and SCW arthritis. HBGF-1 mRNA was detected in RA synovium using the polymerase chain reaction technique, and its product was immunolocalized intracellularly in both RA and osteoarthritis (OA) synovium. HBGF-1 staining was more extensive and intense in synovium of RA patients than OA and correlated with the extent and intensity of synovial mononuclear cell infiltration. HBGF-1 staining also correlated with c-Fos protein staining. In SCW arthritis, HBGF-1 immunostaining was noted in bone marrow, bone, cartilage, synovium, ligamentous and tendinous structures, as well as various dermal structures and developed early in both T-cell competent and incompetent rats. Persistent high level immunostaining of HBGF-1 was only noted in T-cell competent rats like the disease process in general. These observations implicate HBGF-1 in a multitude of biological functions in inflammatory joint diseases.  相似文献   

20.
Rheumatoid arthritis (RA) is a systemic disorder characterized by synovial inflammation and subsequent destruction and deformity of synovial joints. The articular lesions start with synovitis, focal erosion of unmineralized cartilage, and then culminate in the destruction of subarticular bone by pannus tissue. Periarticular osteopenia and systemic osteoporosis follow as late complications of RA. Osteoclasts, specialized cells that resorb bone, play a central role in developing these osteolytic lesions. To elucidate the mechanism of osteoclastogenesis and bone destruction in autoimmune arthritis, we investigated the expression of RANK ligand (RANKL), RANK, and osteoprotegerin (OPG) mRNA in a mouse type II collagen-induced arthritis (CIA) model by in situ hybridization. The results indicated that most of the TRAP-positive mono- and multinucleated cells in the inflamed and proliferating synovium and in the pannus were RANK-positive authentic osteoclasts and their precursors. In the inflamed synovium and pannus of the mouse CIA model, synovial fibroblastic cells around these RANK-positive cells were strongly positive for RANKL. Moreover, RANKL-positive osteoblasts on the endosteal bone surface, at a distance from the affected synovial joints, increased significantly in the mouse CIA model prior to periarticular osteopenia and systemic osteoporosis. These data indicated that the RANKL-RANK system plays an important role for osteoclastogenesis in both local and systemic osteolytic lesions in autoimmune arthritis, and can therefore be a good target for therapeutic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号