首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

All eukaryotic organisms need to distinguish each of their chromosomes. A few protein complexes have been described that recognise entire, specific chromosomes, for instance dosage compensation complexes and the recently discovered autosome-specific Painting of Fourth (POF) protein in Drosophila. However, no sequences have been found that are chromosome-specific and distributed over the entire length of the respective chromosome. Here, we present a new, unbiased, exhaustive computational method that was used to probe three Drosophila genomes for chromosome-specific sequences.  相似文献   

2.

Background  

Paucity of male-biased genes on the Drosophila X chromosome is a well-established phenomenon, thought to be specifically linked to the role of these genes in reproduction and/or their expression in the meiotic male germline. In particular, meiotic sex chromosome inactivation (MSCI) has been widely considered a driving force behind depletion of spermatocyte-biased X-linked genes in Drosophila by analogy with mammals, even though the existence of global MCSI in Drosophila has not been proven.  相似文献   

3.

Background  

Sex determining mechanisms are evolutionarily labile and related species often use different primary signals and gene regulatory networks. This is well illustrated by the sex determining cascade of Drosophila fruitflies, which have recruited Sex-lethal as the master switch and cellular memory of sexual identity, a role performed in other insects by the gene transformer. Here we investigate the evolutionary change in the coding sequences of sex determining genes associated with the recruitment of Sex-lethal. We analyze sequences of Sex-lethal itself, its Drosophila paralogue sister-or-Sex-lethal and downstream targets transformer and doublesex.  相似文献   

4.

Background  

Several studies have shown that genomes contain a mixture of transposable elements, some of which are still active and others ancient relics that have degenerated. This is true for the non-LTR retrotransposon Helena, of which only degenerate sequences have been shown to be present in some species (Drosophila melanogaster), whereas putatively active sequences are present in others (D. simulans). Combining experimental and population analyses with the sequence analysis of the 12 Drosophila genomes, we have investigated the evolution of Helena, and propose a possible scenario for the evolution of this element.  相似文献   

5.

Background  

Double-stranded RNA (dsRNA) is a potent initiator of gene silencing in a diverse group of organisms that includes plants, Caenorhabditis elegans, Drosophila and mammals. We have previously shown and patented that mechanical inoculation of in vitro-transcribed dsRNA derived from viral sequences specifically prevents virus infection in plants. The approach required the in vitro synthesis of large amounts of RNA involving high cost and considerable labour.  相似文献   

6.
7.

Background  

The Drosophila Male Specific Lethal (MSL) complex contains chromatin modifying enzymes and non-coding roX RNA. It paints the male X at hundreds of bands where it acetylates histone H4 at lysine 16. This epigenetic mark increases expression from the single male X chromosome approximately twofold above what gene-specific factors produce from each female X chromosome. This equalises X-linked gene expression between the sexes. Previous screens for components of dosage compensation relied on a distinctive male-specific lethal phenotype.  相似文献   

8.

Background  

Codon usage bias (CUB), the uneven use of synonymous codons, is a ubiquitous observation in virtually all organisms examined. The pattern of codon usage is generally similar among closely related species, but differs significantly among distantly related organisms, e.g., bacteria, yeast, and Drosophila. Several explanations for CUB have been offered and some have been supported by observations and experiments, although a thorough understanding of the evolutionary forces (random drift, mutation bias, and selection) and their relative importance remains to be determined. The recently available complete genome DNA sequences of twelve phylogenetically defined species of Drosophila offer a hitherto unprecedented opportunity to examine these problems. We report here the patterns of codon usage in the twelve species and offer insights on possible evolutionary forces involved.  相似文献   

9.

Background  

Functional studies in model organisms, such as vertebrates and Drosophila, have shown that basic Helix-loop-Helix (bHLH) proteins have important roles in different steps of neurogenesis, from the acquisition of neural fate to the differentiation into specific neural cell types. However, these studies highlighted many differences in the expression and function of orthologous bHLH proteins during neural development between vertebrates and Drosophila. To understand how the functions of neural bHLH genes have evolved among bilaterians, we have performed a detailed study of bHLH genes during nervous system development in the polychaete annelid, Platynereis dumerilii, an organism which is evolutionary distant from both Drosophila and vertebrates.  相似文献   

10.
11.
During Drosophila oogenesis, two clusters of chorion genes and their flanking DNA sequences undergo amplification in the ovarian follicle cells. Amplification results from repeated rounds of initiation and bidirectional replication within the chorion gene regions, possibly from a single origin, producing nested replication forks. Previously we have shown that following reintroduction into the Drosophila genome, a specific 3.8 kilobase pair DNA segment from the amplified third chromosome domain could induce developmentally regulated amplification at its site of insertion. Here we present the complete nucleotide sequence of this amplification control element and of genes encoding the chorion structural proteins s18-1 and s15-1, which are contained within it. Sequences that may be involved in the regulation of chorion gene amplification and expression are identified.  相似文献   

12.

Background  

The mammalian protein kinase TLK1 is a homologue of Tousled, a gene involved in flower development in Arabidopsis thaliana. The function of TLK1 is not well known, although knockout of the gene in Drosophila, or expression of a dominant negative mutant in mouse mammary cells causes loss of nuclear divisions and chromosome mis-segregation. TLK1B is a splice variant of TLK1 and it confers radioresistance in a normal mammary mouse cell line possibly due to increased chromatin remodeling capacity, but the mechanism of resistance remains to be fully elucidated.  相似文献   

13.

Background  

An Escherichia coli strain in which RecBCD has been genetically replaced by the bacteriophage λ Red system engages in efficient recombination between its chromosome and linear double-stranded DNA species sharing sequences with the chromosome. Previous studies of this experimental system have focused on a gene replacement-type event, in which a 3.5 kbp dsDNA consisting of the cat gene and flanking lac operon sequences recombines with the E. coli chromosome to generate a chloramphenicol-resistant Lac- recombinant. The dsDNA was delivered into the cell as part of the chromosome of a non-replicating λ vector, from which it was released by the action of a restriction endonuclease in the infected cell. This study characterizes the genetic requirements and outcomes of a variety of additional Red-promoted homologous recombination events producing Lac+ recombinants.  相似文献   

14.

Background  

The use of molecular biology-based methods for species identification and establishing phylogenetic relationships has supplanted traditional methods relying on morphological characteristics. While PCR-based methods are now the commonly accepted gold standards for these types of analysis, relatively high costs, time-consuming assay development or the need for a priori information about species-specific sequences constitute major limitations. In the present study, we explored the possibility to differentiate between 13 different species from the genus Drosophila via a molecular proteomic approach.  相似文献   

15.

Background  

Methyl-DNA binding proteins help to translate epigenetic information encoded by DNA methylation into covalent histone modifications. MBD2/3 is the only candidate gene in the Drosophila genome with extended homologies to mammalian MBD2 and MBD3 proteins, which represent a co-repressor and an integral component of the Nucleosome Remodelling and Deacetylase (NuRD) complex, respectively. An association of Drosophila MBD2/3 with the Drosophila NuRD complex has been suggested previously. We have now analyzed the molecular interactions between MBD2/3 and the NuRD complex in greater detail.  相似文献   

16.

Background

Diptera have an extraordinary variety of sex determination mechanisms, and Drosophila melanogaster is the paradigm for this group. However, the Drosophila sex determination pathway is only partially conserved and the family Tephritidae affords an interesting example. The tephritid Y chromosome is postulated to be necessary to determine male development. Characterization of Y sequences, apart from elucidating the nature of the male determining factor, is also important to understand the evolutionary history of sex chromosomes within the Tephritidae. We studied the Y sequences from the olive fly, Bactrocera oleae. Its Y chromosome is minute and highly heterochromatic, and displays high heteromorphism with the X chromosome.

Methodology/Principal Findings

A combined Representational Difference Analysis (RDA) and fluorescence in-situ hybridization (FISH) approach was used to investigate the Y chromosome to derive information on its sequence content. The Y chromosome is strewn with repetitive DNA sequences, the majority of which are also interdispersed in the pericentromeric regions of the autosomes. The Y chromosome appears to have accumulated small and large repetitive interchromosomal duplications. The large interchromosomal duplications harbour an importin-4-like gene fragment. Apart from these importin-4-like sequences, the other Y repetitive sequences are not shared with the X chromosome, suggesting molecular differentiation of these two chromosomes. Moreover, as the identified Y sequences were not detected on the Y chromosomes of closely related tephritids, we can infer divergence in the repetitive nature of their sequence contents.

Conclusions/Significance

The identification of Y-linked sequences may tell us much about the repetitive nature, the origin and the evolution of Y chromosomes. We hypothesize how these repetitive sequences accumulated and were maintained on the Y chromosome during its evolutionary history. Our data reinforce the idea that the sex chromosomes of the Tephritidae may have distinct evolutionary origins with respect to those of the Drosophilidae and other Dipteran families.  相似文献   

17.
18.
19.

Background  

Mammalian sex-chromosomes originated from a pair of autosomes. A step-wise cessation of recombination is necessary for the proper maintenance of sex-determination and, consequently, generates a four strata structure on the X chromosome. Each stratum shows a specific per-site nucleotide sequence difference (p-distance) between the X and Y chromosomes, depending on the time of recombination arrest. Stratum 4 covers the distal half of the human X chromosome short arm and the p-distance of the stratum is ~10%, on average. However, a 100-kb region, which includes KALX and VCX, in the middle of stratum 4 shows a significantly lower p-distance (1-5%), suggesting frequent sequence exchanges or gene conversions between the X and Y chromosomes in humans. To examine the evolutionary mechanism for this low p-distance region, sequences of a corresponding region including KALX/Y from seven species of non-human primates were analyzed.  相似文献   

20.

Background  

A variety of techniques have been described which introduce scarless, site-specific chromosomal mutations. These techniques can be applied to make point mutations or gene deletions as well as insert heterologous DNA into bacterial vectors for vaccine development. Most methods use a multi-step approach that requires cloning and/or designing repeat sequences to facilitate homologous recombination. We have modified previously published techniques to develop a simple, efficient PCR-based method for scarless insertion of DNA into Salmonella enteritidis chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号