首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amyloid-beta peptide (Abeta) accumulation in senile plaques, a pathological hallmark of Alzheimer's disease (AD), has been implicated in neuronal degeneration. We have recently demonstrated that Abeta induced oligodendrocyte (OLG) apoptosis, suggesting a role in white matter pathology in AD. Here, we explore the molecular mechanisms involved in Abeta-induced OLG death, examining the potential role of ceramide, a known apoptogenic mediator. Both Abeta and ceramide induced OLG death. In addition, Abeta activated neutral sphingomyelinase (nSMase), but not acidic sphingomyelinase, resulting in increased ceramide generation. Blocking ceramide degradation with N-oleoyl-ethanolamine exacerbated Abeta cytotoxicity; and addition of bacterial sphingomyelinase (mimicking cellular nSMase activity) induced OLG death. Furthermore, nSMase inhibition by 3-O-methyl-sphingomyelin or by gene knockdown using antisense oligonucleotides attenuated Abeta-induced OLG death. Glutathione (GSH) precursors inhibited Abeta activation of nSMase and prevented OLG death, whereas GSH depletors increased nSMase activity and Abeta-induced death. These results suggest that Abeta induces OLG death by activating the nSMase-ceramide cascade via an oxidative mechanism.  相似文献   

2.
Senile plaques are neuropathological manifestations in Alzheimer's disease (AD) and are composed mainly of extracellular deposits of amyloid beta-peptide (Abeta). Various data suggest that the accumulation of Abeta may contribute to neuronal degeneration and that Abeta neurotoxicity could be mediated by oxygen free radicals. Removal of free radicals by antioxidant scavengers or enzymes was found to protect neuronal cells in culture from Abeta toxicity. However, the nature of the free radicals involved is still unclear. In this study, we investigated whether the neuronal overexpression of glutathione peroxidase (GPx), the major hydrogen peroxide (H2O2)-de-grading enzyme in neurons, could increase their survival in a cellular model of Abeta-induced neurotoxicity. We infected pheochromocytoma (PC12) cells and rat embryonic cultured cortical neurons with an adenoviral vector encoding GPx (Ad-GPx) prior to exposure to toxic concentrations of Abeta(25-35) or (1-40). Both PC12 and cortical Ad-GPx-infected cells were significantly more resistant to Abeta-induced injury. These data strengthen the hypothesis of a role of H2O2 in the mechanism of Abeta toxicity and highlight the potential of Ad-GPx to reduce Abeta-induced damage to neurons. These findings may have applications in gene therapy for AD.  相似文献   

3.
22R-hydroxycholesterol, a steroid intermediate in the pathway of pregnenolone formation from cholesterol, was found at lower levels in Alzheimer's disease (AD) hippocampus and frontal cortex tissue specimens compared to age-matched controls. beta-Amyloid (Abeta) peptide has been shown to be neurotoxic and its presence in brain has been linked to AD pathology. 22R-hydroxycholesterol was found to protect, in a dose-dependent manner, against Abeta-induced rat sympathetic nerve pheochromocytoma (PC12) and differentiated human Ntera2/D1 teratocarcinoma (NT2N) neuron cell death. Other steroids tested were either inactive or acted on rodent neurons only. The effect of 22R-hydroxycholesterol was found to be stereospecific because its enantiomer 22S-hydroxycholesterol failed to protect the neurons from Abeta-induced cell death. Moreover, the effect of 22R-hydroxycholesterol was specific for Abeta-induced cell death because it did not protect against glutamate-induced neurotoxicity. The neuroprotective effect of 22R-hydroxycholesterol was seen when using Abeta1-42 but not the Abeta25-35 peptide. To investigate the mechanism of action of 22R-hydroxycholesterol we examined the direct binding of this steroid to Abeta using a novel cholesterol-protein binding blot assay. Using this method the direct specific binding, under native conditions, of 22R-hydroxycholesterol to Abeta1-42 and Abeta17-40, but not Abeta25-35, was observed. These data suggest that 22R-hydroxycholesterol binds to Abeta and the formed 22R-hydroxycholesterol/Abeta complex is not toxic to rodent and human neurons. We propose that 22R-hydroxycholesterol offers a new means of neuroprotection against Abeta toxicity by inactivating the peptide.  相似文献   

4.
Alzheimer's disease (AD) brains are characterized by extensive oxidative stress. Additionally, large depositions of amyloid beta-peptide (Abeta) are observed, and many researchers opine that Abeta is central to the pathogenesis of AD. Our laboratory combined these two observations in a comprehensive model for neurodegeneration in AD brains centered around Abeta-induced oxidative stress. Given the oxidative stress in AD and its potentially important role in neurodegeneration, considerable research has been conducted on the use of antioxidants to slow or reverse the pathology and course of AD. One source of antioxidants is the diet. This review examines the literature of the effects of endogenous and exogenous, nutritionally-derived antioxidants in relation to AD. In particular, studies of glutathione and other SH-containing antioxidants, vitamins, and polyphenolic compounds and their use in AD and modulation of Abeta-induced oxidative stress and neurotoxicity are reviewed.  相似文献   

5.
One hallmark of Alzheimer's disease (AD) is the formation of neurofibrillary tangles, aggregated paired helical filaments composed of hyperphosphorylated tau. Amyloid-beta (Abeta) induces tau hyperphosphorylation, decreases microtubule (MT) stability and induces neuronal death. MT stabilizing agents have been proposed as potential therapeutics that may minimize Abeta toxicity and here we report that paclitaxel (taxol) prevents cell death induced by Abeta peptides, inhibits Abeta-induced activation of cyclin-dependent kinase 5 (cdk5) and decreases tau hyperphosphorylation. Taxol did not inhibit cdk5 directly but significantly blocked Abeta-induced calpain activation and decreased formation of the cdk5 activator, p25, from p35. Taxol specifically inhibited the Abeta-induced activation of the cytosolic cdk5-p25 complex, but not the membrane-associated cdk5-p35 complex. MT-stabilization was necessary for neuroprotection and inhibition of cdk5 but was not sufficient to prevent cell death induced by overexpression of p25. As taxol is not permeable to the blood-brain barrier, we assessed the potential of taxanes to attenuate Abeta toxicity in adult animals using a succinylated taxol analog (TX67) permeable to the blood-brain barrier. TX67, but not taxol, attenuated the magnitude of both basal and Abeta-induced cdk5 activation in acutely dissociated cortical cultures prepared from drug treated adult mice. These results suggest that MT-stabilizing agents may provide a therapeutic approach to decrease Abeta toxicity and neurofibrillary pathology in AD and other tauopathies.  相似文献   

6.
Amyloid beta-peptide (Abeta) is heavily deposited in the brains of Alzheimer's disease (AD) patients. Free-radical oxidative stress, particularly of neuronal lipids, proteins and DNA, is extensive in those AD brain areas in which Abeta is abundant. Recent research suggests that these observations might be linked, and it is postulated that Abeta-induced oxidative stress leads to neurodegeneration in AD brain. Consonant with this postulate, Abeta leads to neuronal lipid peroxidation, protein oxidation and DNA oxidation by means that are inhibited by free-radical antioxidants. Here, we summarize current research on phospholipid peroxidation, as well as protein and DNA oxidation, in AD brain, and discuss the potential role of Abeta in this oxidative stress.  相似文献   

7.
Insights into factors underlying causes of familial Alzheimer's disease (AD), such as mutant forms of beta-amyloid precursor protein and presenilins, and those conferring increased risk of sporadic AD, such as isoforms of apolipoprotein E and polymorphisms of alpha2-macroglobulin, have been rapidly emerging. However, mechanisms through which amyloid beta-peptide (Abeta), the fibrillogenic peptide most closely associated with neurotoxicity in AD, exerts its effects on cellular targets have only been more generally outlined. Late in the course of AD, when Abeta fibrils are abundant, non-specific interactions of amyloid with cellular elements are likely to induce broad cytotoxicity. However, early in AD, when concentrations of Abeta are much lower and extracellular deposits are infrequent, mechanisms underlying cellular dysfunction have not been clearly defined. The key issue in elucidating the means through which Abeta perturbs cellular properties early in AD is the possibility that protective therapy at such times may prevent cytotoxicity at a point when damage is still reversible. This brief review focusses on two cellular cofactors for Abeta-induced cellular perturbation: the cell surface immunoglobulin superfamily molecule RAGE (receptor for advanced glycation endproducts) and ABAD (Abeta binding alcohol dehydrogenase). Although final proof for the involvement of these cofactors in cellular dysfunction in AD must await the results of further in vivo experiments, their increased expression in AD brain, as well as other evidence described below, suggests the possibility of specific pathways for Abeta-induced cellular perturbation which could provide future therapeutic targets.  相似文献   

8.
Research on Alzheimer's disease (AD) focuses mainly on neuronal death and synaptic impairment induced by beta-Amyloid peptide (Abeta), events at least partially mediated by astrocyte and microglia activation. However, substantial white matter damage and its consequences on brain function warrant the study of oligodendrocytes participation in the pathogenesis and progression of AD. Here, we analyze reports on oligodendrocytes' compromise in AD and discuss some experimental data indicative of Abeta toxicity in culture. We observed that 1 microM of fibrilogenic Abeta peptide damages oligodendrocytes in vitro: while pro-inflammatory molecules (1 microg/ ml LPS + 1 ng/ml IFNgamma) or the presence of astrocytes reduced the Abeta-induced damage. This agrees with our previous results showing an astrocyte-mediated protective effect over Abeta-induced damage on hippocampal cells and modulation of the activation of microglial cells in culture. Oligodendrocytes protection by astrocytes could be, either by reduction of Abeta fibrilogenesis/deposition or prevention of oxidative damage. Likewise, the decrease of Abeta-induced damage by proinflammatory molecules could reflect the production of trophic factors by activated oligodendrocytes and/or a metabolic activation as observed during myelination. Considering the association of inflammation with neurodegenerative diseases. oligodendrocytes impairment in AD patients could potentiate cell damage under pathological conditions.  相似文献   

9.
10.
beta-amyloid (Abeta) is a major component of senile plaques that is commonly found in the brain of Alzheimer's disease (AD) patient. In the previous report, we showed that an important angiogenic factor, vascular endothelial growth factor (VEGF) interacts with Abeta and is accumulated in the senile plaques of AD patients' brains. Here we show that Abeta interacts with VEGF(165) isoform, but not with VEGF(121). Abeta binds to the heparin-binding domain (HBD) of VEGF(165) with similar affinity as that of intact VEGF(165). Abeta binds mostly to the C-terminal subdomain of HBD, but with greatly reduced affinity than HBD. Therefore, the full length of HBD appears to be required for maximal binding of Abeta. Although Abeta binds to heparin-binding sequence of VEGF, it does not bind to other heparin-binding growth factors except midkine. Thus it seems that Abeta recognizes unique structural features of VEGF HBD. VEGF(165) prevents aggregation of Abeta through its HBD. We localized the core VEGF binding site of Abeta at around 26-35 region of the peptide. VEGF(165) and HBD protect PC12 cells from the Abeta-induced cytotoxicity. The mechanism of protection appears to be inhibition of both Abeta-induced formation of reactive oxygen species and Abeta aggregation.  相似文献   

11.
12.
Alzheimer disease (AD) is characterized by accumulation of the neurotoxic amyloid beta peptide (Abeta) and by the loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs) throughout the brain. Direct inhibition of nAChRs by Abeta has also been suggested to contribute to cholinergic dysfunction in AD. In an effort to find ligands capable of blocking Abeta-induced inhibition of nAChRs, we have screened a phage display library to identify peptides that bind to Abeta. Using this approach, we identified a heptapeptide denoted IQ, which binds with nanomolar affinity to Abeta and is homologous to the acetylcholine-binding protein and to most subtypes of nAChRs. Rapid kinetic whole-cell current-recording measurements showed that Abeta inhibits nAChR function in a dose-dependent manner in neuronal differentiated PC12 cells and that nanomolar concentrations of IQ completely block the inhibition by Abeta. These results indicate that the Abeta binding site in nAChRs is homologous to the IQ peptide and that this is a relevant target for Abeta neurotoxicity in AD and, more generally, for the regulation of nAChR function by soluble Abeta in a physiological context. Furthermore, the results suggest that the IQ peptide may be a lead for the development of novel drugs to block the inhibition of nAChRs in AD.  相似文献   

13.
Huang HM  Ou HC  Hsieh SJ  Chiang LY 《Life sciences》2000,66(16):1525-1533
Amyloid beta protein (Abeta) alters signal transduction systems, including increases in the cytosolic free calcium ([Ca2+]i) response which have pathophysiological significance in Alzheimer's disease (AD). The purposes of this study were to elucidate the mechanism involved in Abeta's effect on the Ca2+ signal and to evaluate the effect of fullerenol-1, a water-soluble hydroxyl and superoxide radical scavenger, on the Abeta-induced Ca2+ response. Both Abeta and bradykinin (BK) dose-dependently elevated [Ca2+]i in PC12 cells. Fullerenol-1, at a concentration range between 100 nM and 1 microM, dose-dependently reduced the Abeta-induced [Ca2+]i response, but did not alter the subsequent BK-mediated process. Thapsigargin, an inhibitor of Ca2+-ATPase, released Ca2+ from the internal store and diminished the BK-mediated calcium spike but did not affect the Abeta-induced Ca2+ response. In the absence of extracellular calcium, the Abeta-induced, but not BK-induced, calcium spike was completely abolished. The Ca induced by Abeta did not enter through the voltage-dependent calcium channels or ligand gated calcium channels, because the peak of Abeta-evoked Ca2+ was not significantly altered by various Ca2+ channel blockers or a NMDA receptor antagonist MK801. In addition, neither cholera toxin nor pertussis toxin altered the Abeta-induced Ca response. The results demonstrated that Abeta-stimulated [Ca2+]i increase is due to Ca influx from an extracellular source rather than from the intracellular store. Alteration of the membrane lipid structure and permeability by free radicals generated by Abeta may be a major cause of Ca -influx. Furthermore, fullerenol-1, a novel antioxidant, may provide therapeutic benefits in neurodegenerative diseases such as AD.  相似文献   

14.
The p75 neurotrophin receptor (p75(NTR)) is expressed by neurons particularly vulnerable in Alzheimer's disease (AD). We tested the hypothesis that non-peptide, small molecule p75(NTR) ligands found to promote survival signaling might prevent Abeta-induced degeneration and synaptic dysfunction. These ligands inhibited Abeta-induced neuritic dystrophy, death of cultured neurons and Abeta-induced death of pyramidal neurons in hippocampal slice cultures. Moreover, ligands inhibited Abeta-induced activation of molecules involved in AD pathology including calpain/cdk5, GSK3beta and c-Jun, and tau phosphorylation, and prevented Abeta-induced inactivation of AKT and CREB. Finally, a p75(NTR) ligand blocked Abeta-induced hippocampal LTP impairment. These studies support an extensive intersection between p75(NTR) signaling and Abeta pathogenic mechanisms, and introduce a class of specific small molecule ligands with the unique ability to block multiple fundamental AD-related signaling pathways, reverse synaptic impairment and inhibit Abeta-induced neuronal dystrophy and death.  相似文献   

15.
Beta-amyloid peptides (Abeta) are major constituents of senile plaques in Alzheimer's disease (AD) brain and contribute to neurodegeneration, operating through activation of apoptotic pathways. It has been proposed that Abeta induces death by oxidative stress, possibly through the generation of peroxynitrite from superoxide and nitric oxide. Estrogen is thought to play a protective role against neurodegeneration through a variety of mechanisms including scavenging of reactive oxygen species (ROS). In this study, we have challenged with Abeta, either in the presence or in the absence of 17beta-estradiol, differentiated human neuroblastoma SH-SY5Y cells (named line SH) and the same line overexpressing anti-oxidant enzyme superoxide dismutase 1 (SOD1; named line WT). We have observed that: (1) WT cells are less susceptible than SH cells to Abeta insult; (2) caspase-3, but not caspase-1, is involved in Abeta-induced apoptosis in this system; (3) estrogen protects both lines, without significantly affecting SOD activity; and (4) copper chelators prevent Abeta-induced toxicity. Our results further support the notion that anti-oxidant therapy might be beneficial in the treatment of AD by preventing activation of selected apoptotic pathways.  相似文献   

16.
One of the most important pathological features of Alzheimer's disease (AD) is extracellular senile plaques, whose major component is amyloid-beta peptides (Abeta). Abeta binds to the extracellular domain of p75NTR (p75 neurotrophin receptor) and induces neuronal cell death. We investigated the molecular mechanism of Abeta-induced neurotoxicity in detail from the standpoint of interaction between p75NTR and its recently identified relative, PLAIDD (p75-like apoptosis-inducing death domain). Using F11 neuronal hybrid cells, we demonstrate that there are two distinct pathways for Abeta-induced toxicity mediated by p75NTR. One pathway that has been previously elucidated, is mediated by p75NTR, Go, JNK, NADPH oxidase and caspase3-related caspases. We found that PLAIDD and Gi proteins, heterotrimeric G proteins, are involved in the alternative Abeta-induced neurotoxicity mediated by p75NTR. The alternative pathway triggered by Abeta is thus mediated by p75NTR, PLAIDD, Gi, JNK, NADPH oxidase and caspase3-related caspases. In addition, we found that HN, ADNF, IGF-I, or bFGF inhibits both pathways of Abeta-induced neurotoxicity mediated by p75NTR.  相似文献   

17.
Increased cerebral levels of Abeta(42) peptide, either as soluble or aggregated forms, are suggested to play a key role in the pathogenesis of Alzheimer's disease (AD). The identification of genetic defects in presenilins and beta-amyloid precursor protein (beta-APP) has led to the development of cellular and animal models that have helped in understanding aspects of the pathophysiology of the inherited early onset forms of AD. However, the majority of AD cases are sporadic with no clear or defined genetic basis. While genetic mutations are responsible for the accumulation of Abeta in early onset AD, the causative factors for accumulation of Abeta in the late onset AD forms are not known. This raises the possibility that Abeta accumulation in the absence of genetic mutations might result from abnormalities that indirectly affect Abeta production or its clearance. Currently, there is no consensus as to what are the mechanisms by which Abeta accumulates or as to which mechanisms underlie Abeta-induced neuronal death in AD. In this review, I will first describe the physiological role of endoplasmic reticulum in the cell and review some of the data supporting dysfunction of the endoplasmic reticulum as an early event leading to Abeta accumulation in familial AD. I will also discuss the possible role of oxidative stress and other factors as contributors in Abeta accumulation by reducing the clearance of Abeta from the endoplasmic reticulum. Finally, I will summarize data that show the endoplasmic reticulum stress as a mechanism underlying exogenous Abeta neurotoxicity.  相似文献   

18.
Zameer A  Schulz P  Wang MS  Sierks MR 《Biochemistry》2006,45(38):11532-11539
Alzheimer's disease (AD) is characterized by the deposition of amyloid-beta (Abeta) protein in the brain. Immunization studies have demonstrated that anti-Abeta antibodies reduce Abeta deposition and improve clinical symptoms seen in AD. However, conventional antibody-based therapies risk an inflammatory response that can result in meningoencephalitis and cerebral hemorrhage. Here we report on the development of human-based single chain variable domain antibody fragments (scFvs) directed against the Abeta 25-35 region as potential therapeutics for AD that do not risk an inflammatory response. The 25-35 region of Abeta represents a promising therapeutic target since it promotes aggregation and is highly toxic. Two scFvs with differing affinities for Abeta were studied, and both inhibited aggregation of Abeta42 as determined by thioflavin T binding assay and atomic force microscopy analysis and blocked Abeta-induced toxicity toward human neuroblastoma SH-SY5Y cells as determined by MTT and LDH release assays. These results provide additional evidence that scFvs against Abeta provide an attractive alternative to more conventional antibody-based therapeutics for controlling aggregation and toxicity of Abeta.  相似文献   

19.
The amyloid beta peptide abeta (25-35) induces apoptosis independent of p53   总被引:5,自引:0,他引:5  
Apoptosis of neuronal cells apparently plays a role in Alzheimer's disease (AD). The amyloid beta (Abeta) peptide derived from beta-amyloid precursor protein is found in AD brain in vivo and can induce apoptosis in vitro. While p53 accumulates in cells of AD brain, it is not known if p53 plays an active role in Abeta-induced apoptosis. We show here that inactivation of p53 in two experimental cell lines, either by expression of the papillomavirus E6 protein or by a shift to restrictive temperature, does not affect apoptosis induction by Abeta (25-35), indicating that Abeta induces apoptosis in a p53-independent manner.  相似文献   

20.
Astrocytosis is a common feature of amyloid plaques. The Abeta-astrocyte interaction produces a detrimental effect on neurons, which may contribute to neurodegeneration in Alzheimer disease (AD). The regulation of astrocyte apoptosis is essential to physiological and pathological processes in the CNS. Melatonin is a potent antioxidant and free radical scavenger. Previously, we showed that melatonin alleviated the learning and memory deficits in the APP 695 transgenic mouse model of AD. In this study, the importance of melatonin in the management of Abeta-induced apoptosis in an astrocyte-like cell is discussed. We found that rat astroglioma C6 cells treated with Abeta25-35 or Abeta1-42 undergo apoptosis and that melatonin pretreatment at 10(-5), 10(-6), and 10(-7) M significantly attenuates Abeta25-35- or Abeta1-42-induced apoptosis. The antiapoptotic effects of melatonin were extremely reproducible and corroborated by multiple quantitative methods, including an MTT cell viability assay, Hoechst 33342 nuclei staining, DNA fragmentation analysis, and flow cytometric analysis. In addition, melatonin effectively suppressed Abeta1-42-induced nitric oxide formation, remarkably prevented Abeta1-40-induced intracellular calcium overload, and significantly alleviated Abeta1-40-induced membrane rigidity. Our results demonstrate that, in addition to the beneficial effects of providing direct antioxidant protection to neurons, melatonin may enhance neuroprotection against Abeta-induced neurotoxicity by promoting the survival of glial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号