首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
应用组织培养技术对川贝母(Fritillaria cirrhosaD.Don)进行多倍体诱导。结果表明:组织培养条件下,将川贝母愈伤口组织在培养基中添加一定浓度的和为水仙素处理一段时间,或者经一定浓度的和为水仙素浸泡一段时间后再培养,均可诱发川贝母多倍体的产生,但以前者效果较好。在秋水仙素浓度为1000mg/L。处理5d的条件下,诱导率最高达70%。细胞染色体鉴定结果为:四倍体染色体数为2n=4x=48,而二倍体的染色体数为2n=2x=24。  相似文献   

2.
秋水仙素对草莓离体叶片再生和多倍体诱导的影响   总被引:3,自引:0,他引:3  
以草莓(Fragaria×ananassa Duch.)栽培品种'雪蜜'(2n=8X=56)的离体叶片为外植体,研究了不同浓度秋水仙素对愈伤组织诱导率、不定芽再生率以及多倍体植株诱导的影响,并采用流式细胞仪对多倍体植株的倍性进行鉴定.结果显示,用质量体积分数0.1%、0.3%、0.5%和0.7%的秋水仙素浸泡2、4和6 d,草莓离体叶片均能诱导出愈伤组织和不定芽,但随秋水仙素浓度的提高和处理时间的延长,愈伤组织诱导率和不定芽再生率均显著下降.用不同浓度秋水仙素处理均能产生多倍体植株,倍性为9X、10X、11X、12X、14X和16X;随秋水仙素浓度的提高,多倍体诱导率呈现先上升后下降的变化趋势.用质量体积分数0.3%秋水仙素浸泡处理4 d是最佳的草莓离体叶片诱导方法,不定芽再生率达到40.5%,多倍体诱导率为100.0%,并且诱导产生出16X的植株.  相似文献   

3.
以茎段浸泡法和培养基培养法诱导新疆一枝蒿多倍体的结果表明,茎段浸泡法的诱导效果比较好,其中以0.2%秋水仙素浸泡茎段1d的处理效果最好,多倍体诱导率达27.3%。  相似文献   

4.
以滇北球花报春(Primula denticulata ssp.sinodenticulata)为供试材料,在离体条件下,采用秋水仙素对其丛生芽进行诱导,比较不同浓度、不同处理时间秋水仙素诱导多倍体的效果.结果表明:以0.6%的秋水仙素处理72 h诱导效果最佳,诱导率达54%.经形态学观察发现,变异材料叶色变深,叶片质感变厚;气孔面积增大,单位面积气孔数目减少;染色体计数及核型分析显示,滇北球花报春的二倍体核型为2n=2x=4m+16sm+2st,四倍体核型为2n=4x=8m+32sm+4st,均属3A核型,并成功获得了滇北球花报春的四倍体植株.  相似文献   

5.
利用二倍体蒙古黄芪种子为材料,以低能氮离子束为诱变源,将化学诱导与物理诱变相结合,探索出一套高效的多倍体诱导新方法。研究结果表明:氮离子注入种子后表现出明显的生物学效应;氮离子注入与秋水仙素联合诱导黄芪多倍体的效果很明显。氮离子注入剂量为2.6×1016 N+/cm2,秋水仙素浓度为100 mg·L-1,培养5 d诱导率最高为44.4%;氮离子注入剂量为5.2×1016 N+/cm2, 秋水仙素浓度为150 mg·L-1,培养10d的诱导率最高为46.2%;二者均高于对照组秋水仙素浓度为100 mg·L-1培养15 d的最高诱导率13.9%。利用细胞染色体计数鉴定多倍体为四倍体。  相似文献   

6.
以彩色马蹄莲品种‘Parfait’(Zantedeschiahybrid‘Parfait’)离体丛生芽块为实验材料,对其多倍体诱导过程中秋水仙素和二甲基亚砜(DMSO)浓度以及浸泡时间进行分析,并比较了多倍体与二倍体植株在叶形指数、气孔特征、叶绿素含量和染色体数的差异,最终通过回归分析确定最佳诱导条件。结果显示:随秋水仙素质量体积分数的提高及浸泡时间的缩短,各处理组的丛生芽存活率逐渐增加且均低于对照,而多倍体诱导率逐渐降低且均显著高于对照。综合考虑丛生芽存活率和多倍体诱导率等因素,根据回归分析确定‘Parfait’多倍体诱导的最佳条件为:丛生芽块在含质量体积分数0.20%秋水仙素和体积分数0.10%DMSO的MS液体培养基中浸泡24h,多倍体诱导率可达50.02%。比较分析结果表明:多倍体植株的叶片长度、厚度和长宽比分别为二倍体植株的1.23、1.19和2.93倍,保卫细胞的长度和宽度以及每气孔叶绿体数分别为二倍体植株的1.90、1.96和2.03倍,叶绿素a和总叶绿素含量分别为二倍体植株的1.28和1.17倍;但多倍体植株的叶宽和气孔密度均较小,分别仅为二倍体植株的42.08%和61.55%。除叶绿素b含量外,多倍体植株的其他生物学特性均与二倍体植株差异显著。染色体计数结果显示:获得的多倍体大多为四倍体,染色体数为2n=64,同时还得到了一些嵌合体和六倍体。研究结果表明:彩色马蹄莲品种‘Parfait’多倍体植株的多数生物学特性优于二倍体植株,且其对环境的适应性更强。  相似文献   

7.
中国桔梗多倍体诱导与鉴定   总被引:18,自引:0,他引:18  
在离体培养条件下,比较了不同浓度、不同处理时间的秋水仙素对中国桔梗(Platycodon grandiflorus A.CD)进行染色体加倍的诱导效果。结果表明:用含0.1%秋水仙素处理40h后诱导频率可达50%,诱导效果最佳。经秋水仙素诱导后形成的多倍体植株与原二倍体植株比较,在形态上,多倍植株叶片变宽变大,叶色变深,茎变粗且节距长,气孔增大而单位叶面积气孔数目减少。对变异植株进行细胞学研究发现,体细胞中期染色体数目为2n=4x=36,而原二倍体的染色体数目为2n=2x=18,基数x=9,因此,变异植株(2n=4x=36)为四倍体。前者的核型公式为2n=4x=14m+20sm+2st,核型属于2B;后者的核型公式为2n=2x=7m+10sm+1st,核型也属于2B。检测发现有少数个体有非整倍体变异。  相似文献   

8.
秋水仙素结合组织培养技术诱导大葱多倍体的研究   总被引:9,自引:0,他引:9  
该文研究了秋水仙素不同浓度不同时间处理大葱愈伤组织的诱导效果,发现随着处理时间和浓度的增加,愈伤组织死亡率增加,多倍体细胞诱导率在一定范围内随处理时间和浓度增加升高,但浓度超过一定量诱导率则相反,以0.06%的秋水仙素处理72h多倍体细胞诱导率最佳,且不对愈伤组织产生严重伤害,获得的变异材料与正常二倍体相比,其叶片变粗,生长迟缓,气孔器变大,经鉴定为多倍体。  相似文献   

9.
筛选秋水仙素诱导蚕豆胚根多倍体的最适诱导处理组合并分析其诱导效应.以秋水仙素5个浓度 (0.025%、0.050%、0.100%、0.150%、0.200%)和4个诱导时间(12、24、48、60 h)正交组合(蒸馏水处理为对照)分别处理蚕豆胚根.以根尖诱导率和胚根膨大率的显著性差异确定蚕豆胚根多倍体的最适诱导处理组合,并以胚根细胞染色体数目和幼叶气孔数目的变化对诱导效果进行鉴定,分析其幼苗期的胚根数目和幼苗长度.结果表明:秋水仙素最适诱导时间为48 h和浓度为0.100%;气孔数量在诱导时间和诱导浓度之间均有显著差异,但幼苗期的胚根数量和幼苗长度在不同的诱导时间之间无显著差异,诱导浓度之间差异显著.  相似文献   

10.
广藿香毛状根多倍体诱导及其植株再生   总被引:1,自引:0,他引:1  
为了提高药用植物广藿香的次生物质广藿香醇含量,采用秋水仙素人工诱导染色体加倍技术,进行了广藿香毛状根多倍体诱导及其植株再生、倍性鉴定和挥发油组分广藿香醇含量的测定。结果表明,广藿香毛状根多倍体诱导的最佳条件为0.05%秋水仙素处理36 h,其多倍体诱导率可达40%以上;经秋水仙素加倍的广藿香毛状根在MS+6-BA 0.2 mg/L+NAA 0.1 mg/L培养基中培养60 d后可获得毛状根多倍体再生植株。与对照(二倍体植株)相比,广藿香毛状根多倍体再生植株根系更发达、茎更粗、节间变短、叶片的长度、宽度和厚度均较二倍体明显增大。根尖细胞染色体压片观察证实,所获得的广藿香毛状根多倍体再生植株为四倍体,其根尖细胞染色体数约为128;同时,其叶片的气孔保卫细胞体积及其叶绿体数目均约为对照的两倍;但其气孔密度则随着倍性增加而下降,二倍体植株叶片的气孔密度约为四倍体植株叶片的1.67倍。GC-MS测定结果表明,广藿香毛状根多倍体再生植株的广藿香挥发油组分广藿香醇的含量为4.25 mg/g干重,约为二倍体植株的2.30倍。该结果证实毛状根多倍体化可提高药用植物广藿香的广藿香醇含量。  相似文献   

11.
12.
13.
14.
15.
In experiments on Black Sea skates (Raja clavata), the potential of the receptor epithelium of the ampullae of Lorenzini and spike activity of single nerve fibers connected to them were investigated during electrical and temperature stimulation. Usually the potential within the canal was between 0 and –2 mV, and the input resistance of the ampulla 250–400 k. Heating of the region of the receptor epithelium was accompanied by a negative wave of potential, an increase in input resistance, and inhibition of spike activity. With worsening of the animal's condition the transepithelial potential became positive (up to +10 mV) but the input resistance of the ampulla during stimulation with a positive current was nonlinear in some cases: a regenerative spike of positive polarity appeared in the channel. During heating, the spike response was sometimes reversed in sign. It is suggested that fluctuations of the transepithelial potential and spike responses to temperature stimulation reflect changes in the potential difference on the basal membrane of the receptor cells, which is described by a relationship of the Nernst's or Goldman's equation type.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. I. M. Sechenov, Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Pacific Institute of Oceanology, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 67–74, January–February, 1980.  相似文献   

16.
17.
Evolution of living organisms is closely connected with evolution of structure of the system of regulations and its mechanisms. The functional ground of regulations is chemical signalization. As early as in unicellular organisms there is a set of signal mechanisms providing their life activity and orientation in space and time. Subsequent evolution of ways of chemical signalization followed the way of development of delivery pathways of chemical signal and development of mechanisms of its regulation. The mechanism of chemical regulation of the signal interaction is discussed by the example of the specialized system of transduction of signal from neuron to neuron, of effect of hormone on the epithelial cell and modulation of this effect. These mechanisms are considered as the most important ways of the fine and precise adaptation of chemical signalization underlying functioning of physiological systems and organs of the living organism  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号