首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Organic soiling is a major issue in the food processing industries, causing a range of biofouling and microbiological problems. Energy dispersive X-ray (EDX) and Fourier transform infra red spectroscopy (FT-IR) were used to quantify and determine the biochemical groups of food soils on stainless steel surfaces. EDX quantified organic material on surfaces where oily based residues predominated, but was limited in its usefulness since other food soils were difficult to detect. FT-IR provided spectral ‘fingerprints’ for each of the soils tested. Key soiling components were associated with specific peaks, viz. oils at 3025 cm?1–3011 cm?1, proteins at 1698 cm?1–1636 cm?1 and carbohydrates at 1658 cm?1–1596 cm?1, 783 cm?1–742 cm?1. High concentrations of some soils (10%) were needed for detection by both EDX and FT-IR. The two techniques may be of use for quantifying and identifying specific recalcitrant soils on surfaces to improve cleaning and hygiene regimes.  相似文献   

2.
The impacts of salt stress and inoculation in in vitro grapevine (Vitis vinifera L.) growth, nutrient accumulation, osmoregulation, photosynthesis and membrane integrity were evaluated. One month exposure to 100 mM NaCl as well as to inoculation with Phaeomoniella chlamydospora reduced relative growth rate (RGR) and induced senescence in grapevine plants, shown by: (1) decrease of Ψπ without osmoregulation, (2) decrease of chlorophyll content and fluorescence, (3) loss of membrane integrity and (4) nutritional disorders. To assess putative changes in structural and/or non-structural carbohydrates induced by these two stress conditions, alcohol insoluble residues from the roots, stems and leaves were also characterised by FT-IR and GC with respect to the sugar composition. The referred organs were distinguished based on: (1) higher proportion of uronic acid residues in leaves which diagnose the presence of pectic polysaccharides (wavenumbers 1100, 1150 and 1018 cm?1 in FT-IR spectra), (2) higher proportion of xylose and glucose on stems and FT-IR spectra diagnostic of xylose-rich polysaccharides (1041 cm?1) and cellulose (1060 cm?1), (3) higher proportion of glucose residues, xylose and arabinose on roots and a FT-IR spectra characteristic of xylose-rich polysaccharides (1041 cm?1). The main alterations induced by salt stress and inoculation were more visible in leaves, where the content of uronic acid decreased showing that changes in cell wall composition occurred, mostly at the pectic fraction. Besides, an accumulation of insoluble glucose was found, and FT-IR spectra showed that this glucose-based material was starch (maximum absorption at 998 cm?1), accumulated as a non-specific response to salt stress and P. chlamydospora inoculation.  相似文献   

3.
The effect of pulsed electric field (PEF) treatments of different intensities on the electroporation of the cytoplasmatic membrane of Chlorella vulgaris, and on the extraction of carotenoids and chlorophylls were investigated. Staining the cells with propidium iodide before and after the PEF treatment revealed the existence of reversible and irreversible electroporation. Application of PEF treatments in the range of 20–25 kV cm?1 caused most of the population of C. vulgaris to be irreversibly electroporated even at short treatment times (5 pulses of 3 µs). However, at lower electric field strengths (10 kV cm?1), cells that were reversibly electroporated were observed even after 50 pulses of 3 µs. The electroporation of C. vulgaris cells by PEF higher than 15 kV cm?1 and duration is higher than 15 µs increased significantly the extraction yield of intracellular components of C. vulgaris. The application of a 20 kV cm?1 for 75 μs increased the extraction yield just after the PEF treatment of the carotenoids, and chlorophylls a and b 0.5, 0.7, and 0.8 times, respectively. However, further increments in electric field strength and treatment time did not cause significant increments in the extraction yield. The extraction of carotenoids from PEF-treated C. vulgaris cells after 1 h of the application of the treatment significantly increased the extraction yield in comparison to the yield obtained from the cells extracted just after the PEF treatment. After PEF treatment at 20 kV cm?1 for 75 µs, extraction yield for carotenoids, and chlorophylls a and b increased 1.2, 1.6, and 2.1 times, respectively. A high correlation was observed between irreversible electroporation and percentage of yield increase when the extraction was conducted after 1 h of the application of PEF treatment (R: 0.93), but not when the extraction was conducted just after PEF treatment (R: 0.67).  相似文献   

4.
Yeast biofilms contribute to quality impairment of industrial processes and also play an important role in clinical infections. Little is known about biofilm formation and their treatment. The aim of this study was to establish a multi-layer yeast biofilm model using a modified 3.7 l bench-top bioreactor operated in continuous mode (D = 0.12 h?1). The repeatability of biofilm formation was tested by comparing five bioprocesses with Rhodotorula mucilaginosa, a strain isolated from washing machines. The amount of biofilm formed after 6 days post inoculation was 83 μg cm?2 protein, 197 μg cm?2 polysaccharide and 6.9 × 106 CFU cm?2 on smooth polypropylene surfaces. Roughening the surface doubled the amount of biofilm but also increased its spatial variability. Plasma modification of polypropylene significantly reduced the hydrophobicity but did not enhance cell attachment. The biofilm formed on polypropylene coupons could be used for sanitation studies.  相似文献   

5.
Ultrasound has shown potential for both increasing microalgal lipid extraction yields and for the control of microalgal blooms through cell disruption. The effect of ultrasound on the viability of microalgae was investigated on the following species: Dunaliella salina, Chlamydomonas concordia and Nannochloropsis oculata. Sonication with a 20 kHz probe (0.086 W cm?3) caused complete cell disruption of D. salina after 4 min. This microalgae species does not have a true cell wall. In the case of C. concordia which has a thin cell wall complete cell disruption under the same conditions took 16 min. Under the same conditions, there was no visible disruption of N. oculata, a species which has a thick cell wall. However spectro-fluorophotometer analysis of the sonicated suspension of N. oculata showed that although the cells were intact, the level of intracellular chlorophyll was reduced by ~10 %. This clearly indicated damage to the microalgal cell wall. After 16 min, treatment cultures of all three species remained viable. Programmed cell death (PCD) has been induced in some microalgal species to terminate algal blooms; ultrasonic application did not induce PCD in any species tested. The supernatant of sonicated D. salina and C. concordia has also been shown to be able to boost the growth of established cultures. These results provide important information concerning the uses of ultrasound in both the microalgal biofuels industry and for the control of microalgal blooms.  相似文献   

6.

Objective

Left ventricular wall stress has been investigated in a variety of populations, but the effect of food intake has not been evaluated. We assessed whether left ventricular wall stress is affected by food intake in healthy subjects.

Methods

Twenty-three healthy subjects aged 25.6?±?4.5 years were investigated. Meridional end-systolic wall stress (ESS) and circumferential end-systolic wall stress (cESS) were measured before, 30 minutes after, and 110 minutes after a standardised meal.

Results

Both ESS and cESS decreased significantly (P?<?0.001) from fasting values 30 minutes after the meal, and had not returned to baseline after 110 minutes. ESS decreased from 65?±?16 kdynes/cm2 (fasting) to 44?±?12 kdynes/cm2 30 minutes after, and to 58?±?13 kdynes/cm2 110 minutes after eating. cESS decreased from 98?±?24 kdynes/cm2 to 67?±?18 kdynes/cm2 30 minutes after, and to 87?±?19 kdynes/cm2 110 minutes after the meal.

Conclusion

This study shows that left ventricular wall stress is affected by food intake in healthy subjects.  相似文献   

7.
Diesel exhaust particles (DEP) in urban air are associated with numerous respiratory diseases. The role of underlying biomechanics in cytotoxicity of individual lung cells relating to DEP exposure is unclear. In this study, atomic force microscopy (AFM), confocal Raman microspectroscopy (RM), and fluorescence (FL) microscopy were used to monitor alterations of single A549 cells exposed to DEP. Results revealed a significant decrease in membrane surface adhesion force and a significant change in cell elasticity as a function of DEP–cell interaction time, and the dynamic changes in cellular biocomponents which were reflected by changes of characteristic Raman bands: 726 cm?1 (adenine), 782 cm?1 (uracil, cytosine, thymine), 788 cm?1 (O–P–O), 1006 cm?1 (phenylalanine), and 1320 cm?1 (guanine) after DEP exposure. These findings suggest that the combination of multi-instruments (e.g., AFM/FL) may offer an exciting platform for investigating the roles of biophysical and biochemical responses to particulate matter-induced cell toxicity.  相似文献   

8.
Three fractions of acidic water-soluble polysaccharides (concentration of glucuronic acid 10?C65%) were obtained from the above-ground part of St. Johns wort Hypericum perforatum L. by serial extraction with water and 0.7% aqueous solution of ammonium oxalate. Enzymatic hydrolysis of these polysaccharides using endo-polygalacturonase indicates that their carbohydrate chains contain the units of galacturone formed by 1,4-??-linked residues of non-substituted D-galacturonic acid. The extracted polysaccharides have been purified by means of gel filtration. It has been shown that water-soluble polysaccharides obtained by extraction with water manly contain the residues of galactose, mannose, glucose, and arabinose (the concentration of glucuronic acid being 10?C27%) while the polysaccharide fraction extracted using 0.7% aqueous solution of ammonium oxalate is presented by pectin polysaccharides. Only the residues of galacturonic acid (55?C72%) have been identified among glucuronic acids in its composition using chromatography/mass spectrometry of trimethylsilyl derivatives. In addition, this fraction contains the residues of the neutral monosaccharides which are typical for pectins: arabinoses, galactoses, rhamnoses, and glucose; there are also minor concentrations of residues of xylose and mannose. IR spectra of pectin polysaccharides of St. John??s wort have absorption bands in the ranges 1740, 1640?C1620, 1236?C1200, and 1200?C1000 cm?1 which are typical for pectins. It has been demonstrated that aqueous solutions of pectin polysaccharides of St. John??s wort (2 mg/mL) have pronounced antioxidant activity (44% of the activity of trolox taken for 100%).  相似文献   

9.
The photosynthetic diatom Cyclotella sp. extrudes chitin nanofibers following cell division. This diatom requires silicon for cell wall biosynthesis and division, as well as nitrogen for biosynthesis of intracellular material and extracellular chitin, an N-acetyl glucosamine biopolymer. The initial nitrogen/silicon molar ratio was the critical parameter for assessing the limits of nitrogen delivery on cell number and chitin production during batch cultivation of Cyclotella in a bubble column photobioreactor under silicon-limited growth conditions, using nitrate as the nitrogen source. The peak rate of volumetric chitin production increased linearly, from 3.0 to 46 mg chitin L?1 day?1, with increasing N/Si ratio over the range studied (0.82 to 8.6 mol N mol?1 Si). However, the cell number yield and the chitin yield per cell increased asymptotically with increasing N/Si ratio, achieving a final cell number yield of 5.3?×?109?±?2.6?×?108 cells mol?1 Si and chitin yield of 28.7?±?1.2 mg chitin per 109 cells (1.0 S.E.). An N/Si ratio of at least 4.0 mol N mol?1 Si achieved 90% of the asymptotic chitin yield. This study has shown that scalable cultivation systems for maximizing chitin nanofiber production will require delivery of both silicon and optimal nitrogen under silicon-limiting growth conditions to promote cell division and subsequent chitin formation.  相似文献   

10.
In this study, callus and cell suspension were induced from seedlings of licorice (G. uralensis). In addition, it was revealed that the appropriate concentration of sucrose could promote the callus growth and increase the content of polysaccharide. The methyl jasmonate (MJ) and phenylalanine (PHE) could enhance the callus growth and content of flavonoids for G. uralensis. For producing more flavonoids and polysaccharide, two-stage cultivation was performed. In the first step, 30 g L?1 sucrose was fed into a 5-L balloon-type bubble bioreactor on 8th day of culture to enhance cell production and metabolite production. In a two-stage cultivation process, PHE (2 mM) and MJ (5 mg L?1) were added into a 5-L balloon-type bubble bioreactor after 10 days of culture. Using a fed-batch cultivation strategy (30 g L?1 sucrose was fed into a 5-L balloon-type bubble bioreactor on 8th day), polysaccharide production was enhanced to 1.19 g L?1, which was 2.12-fold greater than that in batch cultivation. The flavonoids yield (55.42 mg L?1) which was about 22 % higher than that in batch cultivation was obtained on 21st day. In a two-stage cultivation process, the polysaccharide content was increased by 1.14- and 2.12-fold compared with fed-batch cultivation and batch cultivation on 15th day. Meanwhile, total flavonoids yield (132.36 mg L?1) on 15th day, was increased by 2.26- and 2.67-fold compared with fed-batch cultivation and batch cultivation. In conclusion, two-stage cultivation process combined with the sucrose and elicitor treatment could promote both the callus growth and the secondary metabolites accumulation.  相似文献   

11.
Apple polyphenol (procyanidin)–cell wall interactions were investigated and their impact on polysaccharide extractability were determined. Native and oxidised procyanidins with average degrees of polymerisation of 13 and 55 were incubated with cell walls. The effect of polyphenol oxidation was evaluated according to two designs: polyphenols were chemically oxidised either before or during interaction. The extent of procyanidin binding to cell walls was assessed by the weight increase of procyanidin–cell wall complexes as compared to weights of cell walls alone. Pectins and hemicelluloses were subsequently extracted from cell walls and from cell wall–procyanidin adducts using a chelating agent (ammonium oxalate), a pectin lyase treatment and NaOH.Weight increases of complexes ranged from 20% to 29%. Weight gains increased in the following order: native, pre-oxidised, simultaneously oxidised and bound procyanidins, these different fractions were, respectively, bound to cell walls. In presence of native procyanidins, oxalate extracted less pectins, and those pectins had lower degrees of methylation, as compared to cell walls alone. When cell walls were incubated with oxidised and oxidising procyanidins, even less pectins with lower degree of methylation were extracted. Major findings indicated that procyanidins mainly bound to pectins as compared to other cell wall compounds: (1) the procyanidin adsorption to cell walls limited the depolymerisation of pectins supposedly induced by pectin lyase. Thus less pectins were extracted but their degree of methylation increased, indicative of products of lysis of pectin lyase. (2) Hemicelluloses extracted using NaOH (4 M) were more abundant in pectins when oxidised or oxidising procyanidins were complexed rather than non complexed to cell walls.  相似文献   

12.
In the last decades, in particular forest ecosystems became increasingly N saturated due to elevated atmospheric N deposition, resulting from anthropogenic N emission. This led to serious consequences for the environment such as N leaching to the groundwater. Recent efforts to reduce N emissions raise the question if, and over what timescale, ecosystems recover to previous conditions. In order to study the effects on N distribution and N transformation processes under the lowered N deposition treatment, we investigated the fate of deposited NH4 +-15N in soil of a N-saturated Norway spruce forest (current N deposition: 34 kg ha?1 year?1; critical N load: 14 kg ha?1 year?1), where N deposition has been reduced to 11.5 kg ha?1 year?1 since 14.5 years. We traced the deposited 15N in needle litter, bulk soil, and amino acids, microbial biomass and inorganic N in soil. Under reduced N deposition, 123 ± 23% of the deposited N was retained in bulk soil, while this was only 72 ± 15% under ambient deposition. We presume that with reduced deposition the amount of deposited N was small enough to become completely immobilized in plant and soil and no leaching losses occurred. Trees receiving reduced N deposition showed a decline in N content as well as in 15N incorporation into needle litter, indicating reduced N plant uptake. In contrast, the distribution of 15N within the soil over active microbial biomass, microbial residues and inorganic N was not affected by the reduced N deposition. We conclude that the reduction in N deposition impacted only plant uptake and drainage losses, while microbial N transformation processes were not influenced. We assume changes in the biological N turnover to start with the onset of the decomposition of the new, N-depleted litter.  相似文献   

13.
In this study, phyto-synthesis of silver nanoparticles (AgNPs) was achieved using an aqueous leaf extract of Alternanthera tenella. The phytochemical screening results revealed that flavonoids are responsible for the AgNPs formation. The AgNPs were characterised using UV–visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray, transmission electron microscopy, fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction. The average size of the nanoparticles was found to be ≈48 nm. The EDX results show that strong signals were observed for the silver atoms. The strong band appearing at 1601–1595 cm?1 correspond to C–C stretching vibration from dienes in FT-IR spectrum indicating the formation of AgNPs. Human breast adenocarcinoma (MCF-7) cells treated with various concentrations of AgNPs showed a dose-dependent increase in cell inhibition. The IC50 value of the AgNPs was calculated to be 42.5 μg mL?1. The AgNPs showed a significant reduction in the migration of MCF-7 cells.  相似文献   

14.
Across northern Alberta, Canada, bogs experience periodic wildfire and, in the Fort McMurray region, are exposed to increasing atmospheric N deposition related to oil sands development. As the fire return interval shortens and/or growing season temperatures increase, the regional peatland CO2–C sink across northern Alberta will likely decrease, but the magnitude of the decrease could be diminished if increasing atmospheric N deposition alters N cycling in a way that stimulates post-fire successional development in bogs. We quantified net ammonification, nitrification, and dissolved organic N (DON) production in surface peat along a post-fire chronosequence of five bogs where we also experimentally manipulated N deposition (no water controls plus 0, 10, and 20 kg N ha?1 yr?1 simulated deposition, as NH4NO3). Initial KCl-extractable NH4+–N, NO3?–N and DON averaged 176?±?6, 54?±?0.2, and 3580?±?40 ng N cm?3, respectively, with no consistent changes as a function of time since fire and no consistent effects of experimental N addition. Net ammonification, nitrification, and DON production averaged 3.8?±?0.3, 1.6?±?0.2, and 14.3?±?2.0 ng N cm?3 d?1, also with no consistent changes as a function of time since fire and no consistent effects of experimental N addition. Our hypothesis that N mineralization would be stimulated after fire because root death would create a pulse of labile soil organic C was not supported, most likely because ericaceous plant roots typically are not killed in boreal bog wildfires. The absence of any N mineralization response to experimental N addition is most likely a result of rapid immobilization of added NH4+–N and NO3?–N in peat with a wide C:N ratio. In these boreal bogs, belowground N cycling is likely characterized by large DON pools that turn over relatively slowly and small DIN pools that turn over relatively rapidly. For Alberta bogs that have persisted at historically low N deposition values and begin to receive higher N deposition related to anthropogenic activities, peat N mineralization processes may be largely unaffected until the peat C:N ratio reaches a point that no longer favors immobilization of NH4+–N and NO3?–N.  相似文献   

15.
We investigated the effect of pressure on the helix–coil transition of an Ala-rich peptide (AK16: YGAAKAAAAKAAAAKA-NH2) in aqueous solution by FT-IR spectroscopy. The spectra of the amide I' region of AK16 in aqueous solution was decomposed into some component bands using a curve fitting method. The peak at around 1635 cm ?1 corresponding to the solvent exposed α-helix conformer increases with increasing pressures, while the peak at around 1655 cm ?1 corresponding to the random coil conformer decreases. From the pressure dependence of the band intensities, we determined the volume change from the α-helix to random coil conformers of AK16 to be + 10.5 ± 0.3 cm3/mol. The positive volume change is different from the negative volume change generally observed in the pressure denaturation of proteins.  相似文献   

16.

Background

Although plant growth in alpine steppes on the Tibetan Plateau has been suggested to be sensitive to nitrogen (N) addition, the N limitation conditions of alpine steppes remain uncertain.

Methods

After 2 years of fertilization with NH4NO3 at six rates (0, 10, 20, 40, 80 and 160 kg N ha?1 yr?1), the responses of plant and soil parameters as well as N2O fluxes were measured.

Results

At the vegetation level, N addition resulted in an increase in the aboveground N pool from 0.5?±?0.1 g m?2 in the control plots to 1.9?±?0.2 g m?2 in the plots at the highest N input rate. The aboveground C pool, biomass N concentration, foliar δ15N, soil NO3 ?-N and N2O flux were also increased by N addition. However, as the N fertilization rate increased from 10 kg N ha?1 yr?1 to 160 kg N ha?1 yr?1, the N-use efficiency decreased from 12.3?±?4.6 kg C kg N?1 to 1.6?±?0.2 kg C kg N?1, and the N-uptake efficiency decreased from 43.2?±?9.7 % to 9.1?±?1.1 %. Biomass N:P ratios increased from 14.4?±?2.6 in the control plots to 20.5?±?0.8 in the plots with the highest N input rate. Biomass N:P ratios, N-uptake efficiency and N-use efficiency flattened out at 40 kg N ha?1 yr?1. Above this level, soil NO3 ?-N began to accumulate. The seasonal average N2O flux of growing season nonlinearly increased with increased N fertilization rate and linearly increased with the weighted average foliar δ15N. At the species level, N uptake responses to relative N availability were species-specific. Biomass N concentration of seven out of the eight non-legume species increased significantly with N fertilization rates, while Kobresia macrantha and the one legume species (Oxytropics glacialis) remained stable. Both the non-legume and the legume species showed significant 15N enrichment with increasing N fertilization rate. All non-legume species showed significant increased N:P ratios with increased N fertilization rate, but not the legume species.

Conclusions

Our findings suggest that the Tibetan alpine steppes might be N-saturated above a critical N load of 40 kg N ha?1 yr?1. For the entire Tibetan Plateau (ca. 2.57 million km2), a low N deposition rate (10 kg N ha?1 yr?1) could enhance plant growth, and stimulate aboveground N and C storage by at least 1.1?±?0.3 Tg N yr?1 and 31.5?±?11.8 Tg C yr?1, respectively. The non-legume species was N-limited, but the legume species was not limited by N.  相似文献   

17.
Since the middle of 1990s the trend of Lake Balaton towards an increasingly trophic status has been reversed, but N2-fixing cyanobacteria are occasionally dominant, endangering water quality in summer. The sources of nitrogen and its uptake by growing phytoplankton were therefore studied. Experiments were carried out on samples collected from the middle of the Eastern (Siófok) and Western (Keszthely) basins between February and October 2001. Ammonium, urea and nitrate uptake and ammonium regeneration were measured in the upper 5-cm layer of sediment using the 15N-technique. Ammonium was determined by an improved microdiffusion assay. N2 fixation rates were measured by the acetylene-reduction method. Ammonium regeneration rates in the sediment were similar in the two basins. They were relatively low in winter (0.13 and 0.16 μg N cm?3 day?1 in the Eastern and Western basin, respectively), increased slowly in the spring (0.38 and 0.45 μg N cm?3 day?1) and peaked in late summer (0.82 and 1.29 μg N cm?3 day?1, respectively). Ammonium uptake was predominant in spring in the Eastern basin and in summer in the Western basin, coincident with the cyanobacterial bloom. The amount of N2 fixed was less than one third of the internal load during summer when external N loading was insignificant. Potentially, the phytoplankton N demand could be supported entirely by the internal N load via ammonium regeneration in the water column and sediment. However, the quantity of N from ammonium regeneration in the upper layer of sediment combined with that from the water column would limit the standing phytoplankton crop in spring in both basins and in late summer in the Western basin, especially when the algal biomass increases suddenly.  相似文献   

18.
To predict the environmental benefits of energy crop production and use, the nature and fate of biomass residues in the soil need to be quantified. Our objective was to quantify Miscanthus x giganteus biomass recycling to soil and to assess how harvesting time and N fertilization affect their characteristics and subsequent biodegradability. The quantification of aerial and belowground biomass and their sampling were performed on 2- and 3-year-old Miscanthus stands, either fertilized with 120 kg N ha?1 year?1 or not fertilized, in autumn (maximal biomass production) and winter (maturity). Plant biomass was chemically characterized (total sugars, Klason lignin, C/N) and incubated in optimum decomposition conditions (15°C, ?80 kPa) for 263 days, for C and N mineralization. Accumulation of carbon in rhizomes and roots was 7.5 to 10 t C ha?1 and represented about 50% of total plant biomass C. Senescent leaves represented about 1.5 t C ha?1 year?1. All residues, especially the roots, had high lignin contents, while the rhizomes also had a high soluble content due to their nutrient storage function. The C mineralization rates were closely related to the chemical characteristics of the residue, higher sugar and lower lignin contents leading to faster decomposition, as observed for rhizomes.  相似文献   

19.
C and N mineralization kinetics of 25 catch crop (CC) residues, whose organic C:N ratio varied from 9.5 to 34.0, were studied during soil incubations under controlled conditions. Decomposition rates were rather similar for the different CC residues, 59% to 68% residue-C being mineralized after 168 days incubation. C mineralized during the first weeks was mainly correlated to the soluble C content of the residue. N mineralized from CC residues was much more variable (?4.9 to +38.0 mg N g?1 added C at day 168), and was mainly related to the organic N content in residues. C and N mineralization kinetics were simulated with STICS residue decomposition model, using the previous parameterization mostly based on mature crop residues (Nicolardot et al. Plant Soil 228:83–103, 2001). A reasonable agreement was found between measured and simulated C kinetics but N mineralization was underestimated by the model. A new parameterization was carried out to improve N predictions. The fitting procedure was first applied independently to each CC residue in order to optimise the five parameters of the model. The relationships found between each optimised parameter and the C:N ratio of CC residues were similar to those obtained previously, indicating that the same model was applicable to all residues. The parameters of these relationships were fitted on a combined dataset including CC and mature residues. The new parameterisation lead to better simulations for CC residues, the errors of prediction (RMSE) for C and N mineralization being 32 and 1.8 mg g?1 added C, respectively. For the whole dataset (68 residues), the RMSE were 50 and 3.3 mg g?1 added C. The prediction quality is satisfactory with respect to the model simplicity and the single criterion of residue quality (C:N ratio).  相似文献   

20.
In the biological pretreatment process, white-rot fungi are mostly used to degrade lignin and carbohydrates in lignocellulosic biomass. In this study, water-soluble hemicelluloses were recovered from birch wood (Betula alnoides) decayed by white-rot fungi (Ganoderma lucidum C7016) for different durations up to 16 weeks. Accordingly, the dimethyl sulfoxide (DMSO)-soluble hemicelluloses were isolated from the untreated birch wood as a comparison. Results showed that the fungal-degraded polysaccharides were acidic hemicelluloses having a high content of uronic acids ranging from 20.6 to 22.5 %. Gel permeation chromatography analysis demonstrated that the recovered water-soluble hemicelluloses had a lower average molecular weight (M w, 15,990–27,560 g?mol?1) than that of the DMSO-soluble hemicelluloses (M w , 33,960 g?mol?1). Fourier transform infrared spectroscopy, scanning electron microscopy, one- and two-dimensional nuclear magnetic resonance spectroscopy also revealed significantly changes between those of fungal degraded and DMSO-soluble hemicelluloses. It was proposed that the hemicelluloses with low molecular weights were easily removed from wood by fungal degradation. This research revealed the changes of hemicelluloses in fungal degradation in the natural environment, which may enable the exploration of novel methods in bioconversion of lignocellulosic biomass for the production of biofuels and biopolymers, in addition to the development of new and better ways to protect wood from biodegradation by microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号