首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recombinant adeno-associated virus (rAAV) vectors are promising vehicles for achieving stable liver transduction in vivo. However, the mechanisms of liver transduction are not fully understood, and furthermore, the relationships between rAAV dose and levels of transgene expression, total number of hepatocytes transduced, and proportion of integrated vector genomes have not been well established. To begin to elucidate the liver transduction dose response with rAAV vectors, we injected mice with two different human factor IX or Escherichia coli lacZ-expressing AAV serotype 2-based vectors at doses ranging between 4.0 x 10(8) and 1.1 x 10(13) vector genomes (vg)/mouse, in three- to sixfold increments. A 2-log-range linear dose-response curve of transgene expression was obtained from 3.7 x 10(9) to 3.0 x 10(11) vg/mouse. Vector doses above 3.0 x 10(11) vg/mouse resulted in disproportionately smaller increases in both the number of transduced hepatocytes and levels of transgene expression, followed by saturation at doses above 1.8 x 10(12) vg/mouse. In contrast, a linear increase in the number of vector genomes per hepatocyte was observed up to 1.8 x 10(12) vg/mouse concomitantly with enhanced vector genome concatemerization, while the proportion of integrated vector genomes was independent of the vector dose. Thus, the mechanisms that restrict a wide-range linear dose response at high doses likely involve decreased functionality of vector genomes and restriction of transduction to fewer than 10% of total hepatocytes. Such information may be useful to determine appropriate vector doses for in vivo administration and provides further insights into the mechanisms of rAAV transduction in the liver.  相似文献   

3.
Recombinant adeno-associated virus vectors (rAAV) show promise in preclinical trials for the treatment of genetic diseases including hemophilia. Liver-directed gene transfer results in a slow rise in transgene expression, reaching steady-state levels over a period of 5 weeks concomitant with the conversion of the single-stranded rAAV molecules into high-molecular-weight concatemers in about 5% of hepatocytes. Immunohistochemistry and RNA in situ hybridization show that the transgene product is made in about approximately 5% of hepatocytes, suggesting that most rAAV-mediated gene expression occurs in hepatocytes containing the double-stranded concatemers. In this study, the mechanism(s) involved in stable transduction in vivo was evaluated. While only approximately 5% of hepatocytes are stably transduced, in situ hybridization experiments demonstrated that the vast majority of the hepatocytes take up AAV-DNA genomes after portal vein infusion of the vector. Two different vectors were infused together or staggered by 1, 3, or 5 weeks, and two-color fluorescent in situ hybridization and molecular analyses were performed 5 weeks after the infusion of the second vector. These experiments revealed that a small but changing subpopulation of hepatocytes were permissive to stable transduction. Furthermore, in animals that received a single infusion of two vectors, about one-third of the transduced cells contained heteroconcatemers, suggesting that dimer formation was a critical event in the process of concatemer formation. To determine if the progression through the cell cycle was important for rAAV transduction, animals were continuously infused with 5'-bromo-2'-deoxyuridine (BrdU), starting at the time of administration of a rAAV vector that expressed cytoplasmic beta-galactosidase. Colabeling for beta-galactosidase and BrdU revealed that there was no preference for transduction of cycling cells. This was further confirmed by demonstrating no increase in rAAV transduction efficiencies in animals whose livers were induced to cycle at the time of or after vector administration. Taken together, our studies suggest that while virtually all hepatocytes take up vector, unknown cellular factors are required for stable transduction, and that dimer formation is a critical event in the transduction pathway. These studies have important implications for understanding the mechanism of integration and may be useful for improving liver gene transfer in vivo.  相似文献   

4.
Intestinal gene transfer offers promise as a therapeutic option for treatment of both intestinal and non-intestinal diseases. Recombinant adeno-associated virus serotype 2, rAAV2, based vectors have been utilized to transduce lung epithelial cells in culture and in human subjects. rAAV2 transduction of intestinal epithelial cells, however, is limited both in culture and in vivo. Proteasome-inhibiting agents have recently been shown to enhance rAAV2-mediated transgene expression in airway epithelial cells. We hypothesized that similar inhibition of proteasome-related cellular processes can function to induce rAAV2 transduction of intestinal epithelial cells. Our results demonstrate that combined treatment with proteasome-modulating agents MG101 (N-acetyl-L-leucyl-L-leucyl-L-norleucine) and Doxorubicin synergistically induces rAAV2-mediated luciferase transgene expression by >400-fold in undifferentiated Caco-2 cells. In differentiated Caco-2 monolayers, treatment with MG101 and Doxorubicin induces transduction preferentially from the basolateral cell surface. In addition to Caco-2 cells, treatment with MG101 and Doxorubicin also results in enhanced rAAV2 transduction of HT-29, T84, and HCT-116 human intestinal epithelial cell lines. We conclude that MG101 and Doxorubicin mediate generic effects on intestinal epithelial cells that result in enhanced rAAV2 transduction. Use of proteasome-modulating agents to enhance viral transduction may facilitate the development of more efficient intestinal gene transfer protocols.  相似文献   

5.
The study of melanocyte biology is important to understand their role in health and disease. However, current methods of gene transfer into melanocytes are limited by safety or efficacy. Recombinant adeno-associated virus (rAAV) has been extensively investigated as a gene therapy vector, is safe and is associated with persistent transgene expression without genome integration. There are twelve serotypes and many capsid variants of rAAV. However, a comparative study to determine which rAAV is most efficient at transducing primary human melanocytes has not been conducted. We therefore sought to determine the optimum rAAV variant for use in the in vitro transduction of primary human melanocytes, which could also be informative to future in vivo studies. We have screened eight variants of rAAV for their ability to transduce primary human melanocytes and identified rAAV6 as the optimal serotype, transducing 7–78% of cells. No increase in transduction was seen with rAAV6 tyrosine capsid mutants. The number of cells expressing the transgene peaked at 6–12 days post-infection, and transduced cells were still detectable at day 28. Therefore rAAV6 should be considered as a non-integrating vector for the transduction of primary human melanocytes.  相似文献   

6.
Dendritic cells (DCs) are pivotal antigen-presenting cells for regulating immune responses. A major focus of contemporary vaccine research is the genetic modification of DCs to express antigens or immunomodulatory molecules, utilizing a variety of viral and nonviral vectors, to induce antigen-specific immune responses that ameliorate disease states as diverse as malignancy, infection, autoimmunity, and allergy. The present study has evaluated adeno-associated virus (AAV) type 2 as a vector for ex vivo gene transfer to human peripheral blood monocyte (MO)-derived DCs. AAV is a nonpathogenic parvovirus that infects a wide variety of human cell lineages in vivo and in vitro, for long-term transgene expression without requirements for cell proliferation. The presented data demonstrate that recombinant AAV (rAAV) can efficiently transduce MOs as well as DCs generated by MO culture with granulocyte-macrophage colony-stimulating factor plus interleukin in vitro. rAAV transgene expression in MO-derived DCs could be enhanced by etoposide, previously reported to enhance AAV gene expression. rAAV transduction of freshly purified MO followed by 7 days of culture with cytokines to generate DCs, and subsequent sorting for coexpression of DC markers CD1a and CD40, showed robust transgene expression as well as evidence of nuclear localization of the rAAV genome in the DC population. Phenotypic analyses using multiple markers and functional assays of one-way allogeneic mixed leukocyte reactions indicated that rAAV-transduced MO-derived DCs were as equivalent to nontransduced DCs. These results support the utility of rAAV vectors for future human DC vaccine studies.  相似文献   

7.
The development of targeted vectors, capable of tissue-specific transduction, remains one of the important aspects of vector modification for gene therapy applications. Recombinant adeno-associated virus type 2 (rAAV-2)-based vectors are nonpathogenic, have relatively low immunogenicity, and are capable of long-term transgene expression. AAV-2 vectors bind primarily to heparan sulfate proteoglycan (HSPG), a receptor that is present in many tissues and cell types. Because of the widespread expression of HSPG on many tissues, targeted transduction in vivo appears to be limited with AAV-2 vectors. Thus, development of strategies to achieve transductional targeting will have a profound benefit in the future application of these vectors. We report here a novel conjugate-based targeting method to enhance tissue-specific transduction of AAV-2-based vectors. The present report utilized a high-affinity biotin-avidin interaction as a molecular bridge to cross-link purified targeting ligands, produced genetically as fusion proteins to core-streptavidin, in a prokaryotic expression system. Conjugation of the bispecific targeting protein to the vector was achieved by biotinylating purified rAAV-2 without abolishing the capsid structure, internalization, and subsequent transgene expression. The tropism-modified vectors, targeted via epidermal growth factor receptor (EGFR) or fibroblast growth factor 1alpha receptor (FGFR1alpha), resulted in a significant increase in transduction efficiency of EGFR-positive SKOV3.ip1 cells and FGFR1alpha-positive M07e cells, respectively. Further optimization of this method of targeting should enhance the potential of AAV-2 vectors in ex vivo and in vivo gene therapy and may form the basis for developing targeting methods for other AAV serotype capsids.  相似文献   

8.
Pan RY  Xiao X  Chen SL  Li J  Lin LC  Wang HJ  Tsao YP 《Journal of virology》1999,73(4):3410-3417
Rheumatoid arthritis (RA) is a systemic autoimmune disease affecting 1% of the world's population, with significant morbidity and mortality. In this study, we investigated a recombinant adeno-associated virus (rAAV) vector for its potential application in RA gene therapy. rAAV encoding Escherichia coli beta-galactosidase was injected into rat joints which had already been induced into acute arthritis after local lipopolysaccharide (LPS) administration, and the efficiency of in vivo transduction was evaluated. We observed a striking correlation between vector transgene expression and disease severity in arthritic joints. The inflammatory reaction peaked at 3 to 7 days after LPS treatment, and, at the same time, 95% of the synoviocytes had high-level transgene expression. Gene expression diminished to the basal level (5%) when the inflammation subsided at 30 days after LPS treatment. More importantly, the diminished transgene expression could be efficiently reactivated by a repeated insult. The transgene expression in normal joints transduced with rAAV remained low for a long period of time (30 days) but could still be induced to high levels (95%) at 3 to 7 days after LPS treatment. This is the first demonstration of disease state-regulated transgene expression. These findings strongly support the feasibility of therapeutic as well as preventative gene transfer approaches for RA with rAAV vectors containing therapeutic genes, which are expected to respond primarily to the disease state of the target tissue.  相似文献   

9.
BACKGROUND: Recombinant adeno-associated virus (rAAV) is becoming a promising vector for gene therapy for type I diabetes. The objective of this study was to investigate the effect of incorporation of polyethylenimine (PEI) on rAAV-mediated insulin gene therapy in vitro and in vivo. METHODS: Recombinant AAV vector, harboring the furin-mutated human insulin and enhanced green fluorescent protein (EGFP) genes, was constructed. The effect of complexation with PEI on rAAV-mediated gene transfer was examined in Huh7 human hepatoma cells. The transgene expression was also examined in streptozotocin (STZ)-induced diabetic C57BL/6J mice by direct administration of rAAV into the livers of the animals, followed by monitoring changes in body weight and blood glucose levels. Secretion of human insulin was determined by radioimmunoassay (RIA) and immunohistochemical staining in the livers. RESULTS: Complexation with PEI was shown to enhance rAAV-mediated transgene expression in Huh7 cells, resulting in higher transduction efficiency and enhanced production of immunoreactive human insulin. Heparin competition assay demonstrated that endocytosis of rAAV-PEI was partially inhibited by heparin. The enhancement of rAAV-mediated transgene expression was also demonstrated in the animals, showing lowering of blood glucose and longer duration of normoglycemia. Immunofluorescent staining of the liver sections demonstrated that PEI increased the uptake of rAAV and enhanced insulin secretion. The enhancement of PEI on rAAV-mediated insulin gene therapy was further confirmed by glucose challenge and a 10-h fasting blood glucose test. CONCLUSIONS: Results obtained in this study demonstrated that incorporation of PEI augmented rAAV-mediated insulin gene transfer and enhanced amelioration of hyperglycemia in the STZ-induced diabetic animals.  相似文献   

10.
We report here the significance of the Notch1 receptor in intracellular trafficking of recombinant adeno-associated virus type 2 (rAAV2). RNA profiling of human prostate cancer cell lines with various degrees of AAV transduction indicated a correlation of the amount of Notch1 with rAAV transgene expression. A definitive role of Notch1 in enhancing AAV transduction was confirmed by developing clonal derivatives of DU145 cells overexpressing either full-length or intracellular Notch1. To discern stages of AAV2 transduction influenced by Notch1, competitive binding with soluble heparin and Notch1 antibody, intracellular trafficking using Cy3-labeled rAAV2, and blocking assays for proteasome and dynamin pathways were performed. Results indicated that in the absence or low-level expression of Notch1, only binding of virus was found on the cell surface and internalization was impaired. However, increased Notch1 expression in these cells allowed efficient perinuclear accumulation of labeled capsids. Nuclear transport of the vector was evident by transgene expression and real-time PCR analyses. Dynamin levels were not found to be different among these cell lines, but blocking dynamin function abrogated AAV2 transduction in DU145 clones overexpressing full-length Notch1 but not in clones overexpressing intracellular Notch1. These studies provide evidence for the role of activated Notch1 in intracellular trafficking of AAV2, which may have implications in the optimal use of AAV2 in human gene therapy.  相似文献   

11.
X Xiao  J Li    R J Samulski 《Journal of virology》1996,70(11):8098-8108
Muscle-directed gene transfer is being considered for the treatment of several metabolic diseases, including hemophilia and Duchene's muscular dystrophy. Previous efforts to target this tissue for somatic delivery with various vector systems have resulted in transient expression due to silencing of the transgene or to an immune response against the vector-transduced cells. We introduced recombinant adeno-associated virus vector (rAAV) carrying a lacZ reporter into muscle tissue of immunocompetent mice. The lacZ reporter gene was efficiently transduced and expressed with no evidence of a cellular immune response. Moreover, gene expression persisted for more than 1.5 years. Molecular characterization of rAAV vector DNA suggests a mechanism for persistence, since vector episomes convert to high-molecular-weight genomic DNA. These data provide the first report for establishing long-term gene transduction into mammalian muscle cells in vivo without the need for immune modulation of the organism.  相似文献   

12.
BACKGROUND: Gene transfer to salivary glands (SGs) can be accomplished in a minimally invasive manner, resulting in stable, long-term secretion of the transgene product. Therefore, SGs provide a novel target site for several potentially useful clinical gene therapeutics applications. Previous studies have indicated that intravenous, intramuscular and intranasal administration of recombinant adeno-associated virus serotype 2 (rAAV2) vectors induce host immune responses. There are no reported studies on immune responsiveness of rAAV2 vector administration to SGs. MATERIAL AND METHODS: Vectors were administered by retrograde infusion to the SGs of Balb/c mice in various combinations. Thereafter, transgene expression was determined, and evaluations of host innate and adaptive immune responsiveness performed over a 56-day period. RESULTS: Histological examination of SGs from vector-treated mice showed no significant changes in appearance from controls, including the frequency of activated macrophage detection. There were also no differences in salivary flow rates among experimental groups. In vitro stimulation of splenocytes from mice administered rAAV2 showed elevated interferon-gamma levels in culture media. Significant titers of neutralizing antibodies to rAAV2 were detected in serum of mice following rAAV2 vector administration. While SGs could be transduced with low doses of vector it was not possible to repeat the administration and detect transduction with the same serotype at low doses. However, repeat administration was possible with an alternative serotype (rAAV4). CONCLUSIONS: Following a single administration of rAAV2 vectors to SGs there is no significant innate immune response. However, rAAV2 vector administration to SGs results in both cellular and humoral immune responses. The latter may interfere with the efficacy of repeated rAAV2 vector administration.  相似文献   

13.
We established a method for production of recombinant adeno-associated virus type 5 (rAAV5) in insect cells by use of baculovirus expression vectors. One baculovirus harbors a transgene between the inverted terminal repeat sequences of type 5, and the second expresses Rep78 and Rep52. Interestingly, the replacement of type 5 Rep52 with type 1 Rep52 generated four times more rAAV5 particles. We replaced the N-terminal portion of type 5 VP1 with the equivalent portion of type 2 to generate infectious AAV5 particles. The rAAV5 with the modified VP1 required alpha2-3 sialic acid for transduction, as revealed by a competition experiment with an analog of alpha2-3 sialic acid. rAAV5-GFP/Neo with a 4.4-kb vector genome produced in HEK293 cells or Sf9 cells transduced COS cells with similar efficiencies. Surprisingly, Sf9-produced humanized Renilla green fluorescent protein (hGFP) vector with a 2.4-kb vector genome induced stronger GFP expression than the 293-produced one. Transduction of murine skeletal muscles with Sf9-generated rAAV5 with a 3.4-kb vector genome carrying a human secreted alkaline phosphatase (SEAP) expression cassette induced levels of SEAP more than 30 times higher than those for 293-produced vector 1 week after injection. Analysis of virion DNA revealed that in addition to a 2.4- or 3.4-kb single-stranded vector genome, Sf9-rAAV5 had more-abundant forms of approximately 4.7 kb, which appeared to correspond to the monomer duplex form of hGFP vector or truncated monomer duplex SEAP vector DNA. These results indicated that rAAV5 can be generated in insect cells, although the difference in incorporated virion DNA may induce different expression patterns of the transgene.  相似文献   

14.
Transplantation of a donor cornea to restore vision is the most frequently performed transplantation in the world. Corneal endothelial cells (CEC) are crucial for the outcome of a graft as they maintain corneal transparency and avoid graft failure due to corneal opaqueness. Given the characteristic of being a monolayer and in direct contact with culture medium during cultivation in eye banks, CEC are specifically suitable for gene therapeutic approaches prior to transplantation. Recombinant adeno-associated virus 2 (rAAV2) vectors represent a promising tool for gene therapy of CEC. However, high vector titers are needed to achieve sufficient gene expression. One of the rate-limiting steps for transgene expression is the conversion of single-stranded (ss-) DNA vector genome into double-stranded (ds-) DNA. This step can be bypassed by using self-complementary (sc-) AAV2 vectors. Aim of this study was to compare for the first time transduction efficiencies of ss- and scAAV2 vectors in CEC. For this purpose AAV2 vectors containing enhanced green fluorescent protein (GFP) as transgene were used. Both in CEC and in donor corneas, transduction with scAAV2 resulted in significantly higher transgene expression compared to ssAAV2. The difference in transduction efficiency decreased with increasing vector titer. In most cases, only half the vector titer of scAAV2 was required for equal or higher gene expression rates than those of ssAAV2. In human donor corneas, GFP expression was 64.7±11.3% (scAAV) and 38.0±8.6% (ssAAV) (p<0.001), respectively. Furthermore, transduced cells maintained their viability and showed regular morphology. Working together with regulatory authorities, a translation of AAV2 vector-mediated gene therapy to achieve a temporary protection of corneal allografts during cultivation and transplantation could therefore become more realistic.  相似文献   

15.
Nakai H  Storm TA  Kay MA 《Journal of virology》2000,74(20):9451-9463
Recombinant adeno-associated virus (rAAV) vectors stably transduce hepatocytes in experimental animals. Following portal-vein administration of rAAV vectors in vivo, single-stranded (ss) rAAV genomes become double stranded (ds), circularized, and/or concatemerized concomitant with a slow rise and, eventually, steady-state levels of transgene expression. Over time, at least some of the stabilized genomes become integrated into mouse chromosomal DNA. The mechanism(s) of formation of stable ds rAAV genomes from input ss DNA molecules has not been delineated, although second-strand synthesis and genome amplification by a rolling-circle model has been proposed. To begin to delineate a mechanism, we produced rAAV vectors in the presence of bacterial PaeR7 or Dam methyltransferase or constructed rAAV vectors labeled with different restriction enzyme recognition sites and introduced them into mouse hepatocytes in vivo. A series of molecular analyses demonstrated that second-strand synthesis and rolling-circle replication did not appear to be the major processes involved in the formation of stable ds rAAV genomes. Rather, recruitment of complementary plus and minus ss genomes and subsequent random head-to-head, head-to-tail, and tail-to-tail intermolecular joining were primarily responsible for the formation of ds vector genomes. These findings contrast with the previously described mechanism(s) of transduction based on in vitro studies. Understanding the mechanistic process responsible for vector transduction may allow the development of new strategies for improving rAAV-mediated gene transfer in vivo.  相似文献   

16.
The aim of this study was to investigate the premise that retinal pigment epithelial (RPE) cells are more permissive to recombinant adeno-associated virus (rAAV) transduction than other cells. We investigated the kinetics and mechanisms of rAAV transduction in RPE cells and found that the transduction efficiencies of cultured RPE cells HRPE51 and ARPE19 were significantly higher than those of 293 (P < 0.008) and HeLa (P < 0.025) cells. In addition, RPE cells reached maximum transduction efficiency at a much lower m.o.i. (m.o.i. 10) than 293 cells (m.o.i. 25). Competition experiments using 1 microg/ml heparin inhibited the high level of transduction in RPE cells by 30%, but additional heparin failed to reduce rAAV transduction further. Southern hybridization of low-molecular-weight DNA from transduced RPE cells indicated that 42% of single-stranded rAAV DNA was translocated into the nucleus by 2 h postinfection. By 6 h postinfection, double-stranded rAAV DNA was observed, which coincided with the onset of transgene expression. Southern and fluorescence in situ hybridization of total genomic DNA indicated that long-term transgene expression in RPE cells was maintained by the integration of rAAV into the cellular chromosome. Together, these results suggest that the high permissiveness of RPE cells is not related to the presence of heparan sulfate receptors or nuclear trafficking but may be due to an enhanced rate of second-strand synthesis and that integration in RPE cells is responsible for long-term transgene expression.  相似文献   

17.
Unlike postmitotic tissues in vivo, transduction of cultured cells is poor with recombinant adeno-associated virus (rAAV). The ability of rAAV to transduce cells is greatly enhanced by a variety of agents that induce DNA damage and is elevated in cells defective in the ataxia telangiectasia gene product (ATM), showing increased genomic instability. Here we show that DNA double-stranded break (DSB) repair pathways are involved in the regulation of rAAV transduction efficiency. By quantitative chromatin immunoprecipitation, we found that Ku86 and Rad52 proteins associate with viral DNA inside transduced cells. Both proteins are known to competitively recognize hairpin structures and DNA termini and to promote repair of DSBs, the former by facilitating nonhomologous end joining and the latter by initiating homologous recombination. We found that rAAV transduction is increased in Ku86-defective cells while it is inhibited in Rad52 knockout cells. These results suggest that binding of Rad52 to the rAAV genome might be involved in processing of the vector genome through a homologous recombination pathway.  相似文献   

18.

Introduction

Proof of concept for local gene therapy for the treatment of arthritis with immunomodulatory cytokine interferon beta (IFN-β) has shown promising results in animal models of rheumatoid arthritis (RA). For the treatment of RA patients, we engineered a recombinant adeno-associated serotype 5 vector (rAAV5) encoding human (h)IFN-β under control of a nuclear factor κB promoter (ART-I02).

Methods

The potency of ART-I02 in vitro as well as biodistribution in vivo in arthritic animals was evaluated to characterize the vector prior to clinical application. ART-I02 expression and bioactivity after transduction was evaluated in fibroblast-like synoviocytes (FLS) from different species. Biodistribution of the vector after local injection was assessed in a rat adjuvant arthritis model through qPCR analysis of vector DNA. In vivo imaging was used to investigate transgene expression and kinetics in a mouse collagen induced arthritis model.

Results

Transduction of RA FLS in vitro with ART-I02 resulted in high expression levels of bioactive hIFN-β. Transduction of FLS from rhesus monkeys, rodents and rabbits with ART-I02 showed high transgene expression, and hIFN-β proved bioactive in FLS from rhesus monkeys. Transgene expression and bioactivity in RA FLS were unaltered in the presence of methotrexate. In vivo, vector biodistribution analysis in rats after intra-articular injection of ART-I02 demonstrated that the majority of vector DNA remained in the joint (>93%). In vivo imaging in mice confirmed local expression of rAAV5 in the knee joint region and demonstrated rapid detectable and sustained expression up until 7 weeks.

Conclusions

These data show that hIFN-β produced by RA FLS transduced with ART-I02 is bioactive and that intra-articular delivery of rAAV5 drives expression of a therapeutic transgene in the joint, with only limited biodistribution of vector DNA to other tissues, supporting progress towards a phase 1 clinical trial for the local treatment of arthritis in patients with RA.  相似文献   

19.
20.
Recombinant adeno-associated virus (rAAV) vectors possess the unique ability to introduce genetic alterations at sites of homology in genomic DNA through a mechanism thought to predominantly involve homologous recombination. We have investigated the efficiency of this approach using a mutant enhanced green fluorescent protein (eGFP) fluorescence recovery assay that facilitates detection of gene correction events in living cells under nonselective conditions. Our data demonstrate that rAAV infection can correct a mutant eGFP transgene at an efficiency of 0.1% in 293 cells, as determined by fluorescence-activated cell-sorting analysis. Gene repair was also confirmed using clonal expansion of GFP-positive cells and sequencing of the eGFP transgene. These results support previous findings demonstrating the efficacy of rAAV for gene targeting. In an effort to improve gene-targeting efficiencies, we evaluated several agents known to increase rAAV transduction (i.e., expression of an expressed gene), including genotoxic stress and proteasome inhibitors, but observed no correlation between the level of gene repair and rAAV transduction. Interestingly, however, our results demonstrated that enrichment of G(1)/S-phase cells in the target population through the addition of thymidine moderately (approximately 2-fold) increased gene correction compared to cells in other cell cycle phases, including G(0)/G1, G(1), and G(2)/M. These results suggest that the S phase of the cell cycle may more efficiently facilitate gene repair by rAAV. Transgenic mice expressing the mutant GFP were used to evaluate rAAV targeting efficiencies in primary fetal fibroblast and tibialis muscles. However, targeting efficiencies in primary mouse fetal fibroblasts were significantly lower (approximately 0.006%) than in 293 cells, and no correction was seen in tibialis muscles following rAAV infection. To evaluate the molecular structures of rAAV genomes that might be responsible for gene repair, single-cell injection studies were performed with purified viral DNA in a mutant eGFP target cell line. However, the failure of direct cytoplasm- or nucleus-injected rAAV DNA to facilitate gene repair suggests that some aspect of intracellular viral processing may be required to prime recombinant viral genomes for gene repair events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号