首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil microbial carbon use efficiency (CUE) is a crucial parameter that can be used to evaluate the partitioning of soil carbon (C) between microbial growth and respiration. However, general patterns of microbial CUE among terrestrial ecosystems (e.g., farmland, grassland, and forest) remain controversial. To address this knowledge gap, data from 41 study sites (n = 197 soil samples) including 58 farmlands, 95 forests, and 44 grasslands were collected and analyzed to estimate microbial CUEs using a biogeochemical equilibrium model. We also evaluated the metabolic limitations of microbial growth using an enzyme vector model and the drivers of CUE across different ecosystems. The CUEs obtained from soils of farmland, forest, and grassland ecosystems were significantly different with means of 0.39, 0.33, and 0.42, respectively, illustrating that grassland soils exhibited higher microbial C sequestration potentials (p < .05). Microbial metabolic limitations were also distinct in these ecosystems, and carbon limitation was dominant exhibiting strong negative effects on CUE. Exoenzyme stoichiometry played a greater role in impacting CUE values than soil elemental stoichiometry within each ecosystem. Specifically, soil exoenzymatic ratios of C:phosphorus (P) acquisition activities (EEAC:P) and the exoenzymatic ratio of C:nitrogen (N) acquisition activities (EEAC:N) imparted strong negative effects on soil microbial CUE in grassland and forest ecosystems, respectively. But in farmland soils, EEAC:P exhibited greater positive effects, showing that resource constraints could regulate microbial resource allocation with discriminating patterns across terrestrial ecosystems. Furthermore, mean annual temperature (MAT) rather than mean annual precipitation (MAP) was a critical climate factor affecting CUE, and soil pH as a major factor remained positive to drive the changes in microbial CUE within ecosystems. This research illustrates a conceptual framework of microbial CUEs in terrestrial ecosystems and provides the theoretical evidence to improve soil microbial C sequestration capacity in response to global change.  相似文献   

2.
Despite decades of research, how climate warming alters the global flux of soil respiration is still poorly characterized. Here, we use meta‐analysis to synthesize 202 soil respiration datasets from 50 ecosystem warming experiments across multiple terrestrial ecosystems. We found that, on average, warming by 2 °C increased soil respiration by 12% during the early warming years, but warming‐induced drought partially offset this effect. More significantly, the two components of soil respiration, heterotrophic respiration and autotrophic respiration showed distinct responses. The warming effect on autotrophic respiration was not statistically detectable during the early warming years, but nonetheless decreased with treatment duration. In contrast, warming by 2 °C increased heterotrophic respiration by an average of 21%, and this stimulation remained stable over the warming duration. This result challenged the assumption that microbial activity would acclimate to the rising temperature. Together, our findings demonstrate that distinguishing heterotrophic respiration and autotrophic respiration would allow us better understand and predict the long‐term response of soil respiration to warming. The dependence of soil respiration on soil moisture condition also underscores the importance of incorporating warming‐induced soil hydrological changes when modeling soil respiration under climate change.  相似文献   

3.
The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampled the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5°C monthly maximum air temperature, +50 mm yr-1 precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. These results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and longer-term soil microbial dynamics may be significantly different under changing climate.  相似文献   

4.
The degree to which climate warming will stimulate soil organic carbon (SOC) losses via heterotrophic respiration remains uncertain, in part because different or even opposite microbial physiology and temperature relationships have been proposed in SOC models. We incorporated competing microbial carbon use efficiency (CUE)–mean annual temperature (MAT) and enzyme kinetic–MAT relationships into SOC models, and compared the simulated mass‐specific soil heterotrophic respiration rates with multiple published datasets of measured respiration. The measured data included 110 dryland soils globally distributed and two continental to global‐scale cross‐biome datasets. Model–data comparisons suggested that a positive CUE–MAT relationship best predicts the measured mass‐specific soil heterotrophic respiration rates in soils distributed globally. These results are robust when considering models of increasing complexity and competing mechanisms driving soil heterotrophic respiration–MAT relationships (e.g., carbon substrate availability). Our findings suggest that a warmer climate selects for microbial communities with higher CUE, as opposed to the often hypothesized reductions in CUE by warming based on soil laboratory assays. Our results help to build the impetus for, and confidence in, including microbial mechanisms in soil biogeochemical models used to forecast changes in global soil carbon stocks in response to warming.  相似文献   

5.
A better understanding of soil microbial ecology is critical to gaining an understanding of terrestrial carbon (C) cycle–climate change feedbacks. However, current knowledge limits our ability to predict microbial community dynamics in the face of multiple global change drivers and their implications for respiratory loss of soil carbon. Whether microorganisms will acclimate to climate warming and ameliorate predicted respiratory C losses is still debated. It also remains unclear how precipitation, another important climate change driver, will interact with warming to affect microorganisms and their regulation of respiratory C loss. We explore the dynamics of microorganisms and their contributions to respiratory C loss using a 4-year (2006–2009) field experiment in a semi-arid grassland with increased temperature and precipitation in a full factorial design. We found no response of mass-specific (per unit microbial biomass C) heterotrophic respiration to warming, suggesting that respiratory C loss is directly from microbial growth rather than total physiological respiratory responses to warming. Increased precipitation did stimulate both microbial biomass and mass-specific respiration, both of which make large contributions to respiratory loss of soil carbon. Taken together, these results suggest that, in semi-arid grasslands, soil moisture and related substrate availability may inhibit physiological respiratory responses to warming (where soil moisture was significantly lower), while they are not inhibited under elevated precipitation. Although we found no total physiological response to warming, warming increased bacterial C utilization (measured by BIOLOG EcoPlates) and increased bacterial oxidation of carbohydrates and phenols. Non-metric multidimensional scaling analysis as well as ANOVA testing showed that warming or increased precipitation did not change microbial community structure, which could suggest that microbial communities in semi-arid grasslands are already adapted to fluctuating climatic conditions. In summary, our results support the idea that microbial responses to climate change are multifaceted and, even with no large shifts in community structure, microbial mediation of soil carbon loss could still occur under future climate scenarios.  相似文献   

6.
Accurately predicting the effects of global change on net carbon (C) exchange between terrestrial ecosystems and the atmosphere requires a more complete understanding of how nutrient availability regulates both plant growth and heterotrophic soil respiration. Models of soil development suggest that the nature of nutrient limitation changes over the course of ecosystem development, transitioning from nitrogen (N) limitation in ‘young’ sites to phosphorus (P) limitation in ‘old’ sites. However, previous research has focused primarily on plant responses to added nutrients, and the applicability of nutrient limitation-soil development models to belowground processes has not been thoroughly investigated. Here, we assessed the effects of nutrients on soil C cycling in three different forests that occupy a 4 million year substrate age chronosequence where tree growth is N limited at the youngest site, co-limited by N and P at the intermediate-aged site, and P limited at the oldest site. Our goal was to use short-term laboratory soil C manipulations (using 14C-labeled substrates) and longer-term intact soil core incubations to compare belowground responses to fertilization with aboveground patterns. When nutrients were applied with labile C (sucrose), patterns of microbial nutrient limitation were similar to plant patterns: microbial activity was limited more by N than by P in the young site, and P was more limiting than N in the old site. However, in the absence of C additions, increased respiration of native soil organic matter only occurred with simultaneous additions of N and P. Taken together, these data suggest that altered nutrient inputs into ecosystems could have dissimilar effects on C cycling above- and belowground, that nutrients may differentially affect of the fate of different soil C pools, and that future changes to the net C balance of terrestrial ecosystems will be partially regulated by soil nutrient status.  相似文献   

7.

Background

Variation in microbial metabolism poses one of the greatest current uncertainties in models of global carbon cycling, and is particularly poorly understood in soils. Biological Stoichiometry theory describes biochemical mechanisms linking metabolic rates with variation in the elemental composition of cells and organisms, and has been widely observed in animals, plants, and plankton. However, this theory has not been widely tested in microbes, which are considered to have fixed ratios of major elements in soils.

Methodology/Principal Findings

To determine whether Biological Stoichiometry underlies patterns of soil microbial metabolism, we compiled published data on microbial biomass carbon (C), nitrogen (N), and phosphorus (P) pools in soils spanning the global range of climate, vegetation, and land use types. We compared element ratios in microbial biomass pools to the metabolic quotient qCO2 (respiration per unit biomass), where soil C mineralization was simultaneously measured in controlled incubations. Although microbial C, N, and P stoichiometry appeared to follow somewhat constrained allometric relationships at the global scale, we found significant variation in the C∶N∶P ratios of soil microbes across land use and habitat types, and size-dependent scaling of microbial C∶N and C∶P (but not N∶P) ratios. Microbial stoichiometry and metabolic quotients were also weakly correlated as suggested by Biological Stoichiometry theory. Importantly, we found that while soil microbial biomass appeared constrained by soil N availability, microbial metabolic rates (qCO2) were most strongly associated with inorganic P availability.

Conclusions/Significance

Our findings appear consistent with the model of cellular metabolism described by Biological Stoichiometry theory, where biomass is limited by N needed to build proteins, but rates of protein synthesis are limited by the high P demands of ribosomes. Incorporation of these physiological processes may improve models of carbon cycling and understanding of the effects of nutrient availability on soil C turnover across terrestrial and wetland habitats.  相似文献   

8.
Changes in soil carbon, the largest terrestrial carbon pool, are critical for the global carbon cycle, atmospheric CO2 levels and climate. Climate warming is predicted to be most pronounced in the northern regions and therefore the large soil carbon pool residing in boreal forests will be subject to larger global warming impact than soil carbon pools in the temperate or the tropical forest. A major uncertainty in current estimates of the terrestrial carbon balance is related to decomposition of soil organic matter (SOM). We hypothesized that when soils are exposed to warmer climate the structure of the ground vegetation will change much more rapidly than the dominant tree species. This change will alter the quality and amount of litter input to the soil and induce changes in microbial communities, thus possibly altering the temperature sensitivity of SOM decomposition. We transferred organic surface soil sections from the northern borders of the boreal forest zone to corresponding forest sites in the southern borders of the boreal forest zone and studied the effects of warmer climate after an adaptation period of 2 years. The results showed that initially ground vegetation and soil microbial community structure and community functions were different in northern and southern forest sites and that 2 years of exposure to warmer climate was long enough to cause changes in these ecological indicators. The rate of SOM decomposition was approximately equally sensitive to temperature irrespective of changes in vegetation or microbial communities in the studied forest sites. However, as temperature sensitivity of the decomposition increases with decreasing temperature regime, the proportional increase in the decomposition rate in northern latitudes could lead to significant carbon losses from the soils.  相似文献   

9.
Increasing global temperatures have been reported to accelerate soil carbon (C) cycling, but also to promote nitrogen (N) and phosphorus (P) dynamics in terrestrial ecosystems. However, warming can differentially affect ecosystem C, N and P dynamics, potentially intensifying elemental imbalances between soil resources, plants and soil microorganisms. Here, we investigated the effect of long-term soil warming on microbial resource limitation, based on measurements of microbial growth (18O incorporation into DNA) and respiration after C, N and P amendments. Soil samples were taken from two soil depths (0–10, 10–20 cm) in control and warmed (>14 years warming, +4°C) plots in the Achenkirch soil warming experiment. Soils were amended with combinations of glucose-C, inorganic/organic N and inorganic/organic P in a full factorial design, followed by incubation at their respective mean field temperatures for 24 h. Soil microbes were generally C-limited, exhibiting 1.8-fold to 8.8-fold increases in microbial growth upon C addition. Warming consistently caused soil microorganisms to shift from being predominately C limited to become C-P co-limited. This P limitation possibly was due to increased abiotic P immobilization in warmed soils. Microbes further showed stronger growth stimulation under combined glucose and inorganic nutrient amendments compared to organic nutrient additions. This may be related to a prolonged lag phase in organic N (glucosamine) mineralization and utilization compared to glucose. Soil respiration strongly positively responded to all kinds of glucose-C amendments, while responses of microbial growth were less pronounced in many of these treatments. This highlights that respiration–though easy and cheap to measure—is not a good substitute of growth when assessing microbial element limitation. Overall, we demonstrate a significant shift in microbial element limitation in warmed soils, from C to C-P co-limitation, with strong repercussions on the linkage between soil C, N and P cycles under long-term warming.  相似文献   

10.
火烧对森林土壤有机碳的影响研究进展   总被引:3,自引:0,他引:3  
对国内外火烧影响森林土壤有机碳动态的研究成果进行了综合述评。较多研究表明低强度火烧不会造成土壤有机碳贮量的明显变化,但火烧非常强烈而彻底,土壤有机碳明显减少。有限研究表明火烧对森林土壤呼吸的影响结果有增加、降低或无影响,因火烧强度、火后观测时间、森林类型、火烧迹地上植被恢复进程和气候条件等而异。同时,火烧对土壤有机碳组分(活性有机碳和黑碳)也具有不同程度的影响。随着全球变化研究的深入,火烧作为森林主要管理措施对大气CO2浓度影响亦愈来愈受重视,今后应着重开展以下几方面研究:(1)扩大气候和经营管理的变化对森林土壤有机碳贮量时空动态影响研究;(2)深入探讨火烧影响土壤CO2释放的过程及机理;(3)加强火烧历史和频率对黑碳影响的研究;(4)从广度和深度上加强火烧等经营措施对亚热带森林土壤碳动态影响的研究。  相似文献   

11.
Ecosystem respiration (Reco) is one of the largest terrestrial carbon (C) fluxes. The effect of climate change on Reco depends on the responses of its autotrophic and heterotrophic components. How autotrophic and heterotrophic respiration sources respond to climate change is especially important in ecosystems underlain by permafrost. Permafrost ecosystems contain vast stores of soil C (1672 Pg) and are located in northern latitudes where climate change is accelerated. Warming will cause a positive feedback to climate change if heterotrophic respiration increases without corresponding increases in primary production. We quantified the response of autotrophic and heterotrophic respiration to permafrost thaw across the 2008 and 2009 growing seasons. We partitioned Reco using Δ14C and δ13C into four sources–two autotrophic (above – and belowground plant structures) and two heterotrophic (young and old soil). We sampled the Δ14C and δ13C of sources using incubations and the Δ14C and δ13C of Reco using field measurements. We then used a Bayesian mixing model to solve for the most likely contributions of each source to Reco. Autotrophic respiration ranged from 40 to 70% of Reco and was greatest at the height of the growing season. Old soil heterotrophic respiration ranged from 6 to 18% of Reco and was greatest where permafrost thaw was deepest. Overall, growing season fluxes of autotrophic and old soil heterotrophic respiration increased as permafrost thaw deepened. Areas with greater thaw also had the greatest primary production. Warming in permafrost ecosystems therefore leads to increased plant and old soil respiration that is initially compensated by increased net primary productivity. However, barring large shifts in plant community composition, future increases in old soil respiration will likely outpace productivity, resulting in a positive feedback to climate change.  相似文献   

12.
Land-use change is likely to be a major component of global change at high latitudes, potentially causing significant alterations in soil C and N cycling. We addressed the biogeochemical impacts of land-use change in fully replicated black spruce forests and agricultural fields of different ages (following deforestation) and under different management regimes in interior Alaska. Change from forests to cultivated fields increased summer temperatures in surface soil layers by 4–5 °C, and lengthened the season of biological activity by two to three weeks. Decomposition of a common substrate (oat stubble) was enhanced by 25% in fields compared to forests after litter bags were buried for one year. In-situ net N mineralization rates in site-specific soil were similar in forests and fields during summer, but during winter, forests were the only sites where net N immobilization occurred. Field age and management had a significant impact on C and N mineralization. Rates of annual decomposition, soil respiration and summer net N mineralization tended to be lower in young than in old fields and higher in fallow than in planted young fields. To identify the major environmental factors controlling C and N mineralization, soil temperature, moisture and N availability were studied. Decomposition and net N mineralization seemed to be mainly driven by availability of inorganic N. Soil temperature played a role only when comparing forests and fields, but not in field-to-field differences. Results from soil respiration measurements in fields confirmed low sensitivity of heterotrophic respiration, and thus decomposition to temperature. In addition, both soil respiration and net N mineralization were limited by low soil water contents. Our study showed that (1) C and N mineralization are enhanced by forest clearing in subarctic soils, and (2) N availability is more important than soil temperature in controling C and N mineralization following forest clearing. Projecting the biogeochemical impacts of land-use change at high latitudes requires an improved understanding of its interactions with other factors of global change, such as changing climate and N deposition.  相似文献   

13.
草地是陆地生态系统中最重要、分布最广的生态系统类型之一,对全球碳循环和气候调节有着重要的作用和效应.我国拥有极为丰富的草地资源,是巨大的陆地碳储存库,也是全球碳循环重要组成部分.干湿交替是土壤中普遍发生的自然现象,这种现象的发生可能会加速土壤的碳矿化过程、激增土壤呼吸以及影响微生物的活性和群落结构等.在全球变化日趋显著的背景下,降雨量、降雨强度以及降雨频率的变化将会加速土壤干湿交替进程,进而带来微生物活性、群落结构以及土壤呼吸的变化,并对全球碳循环过程产生重要影响.本文综述了近十年来国内外的相关文献,对干湿交替条件下,土壤释放CO2消耗碳源、土壤呼吸随时间的动态变化趋势以及土壤呼吸与微生物量、微生物活性和微生物群落结构之间的关系进行了分析和总结,以期为更好地理解干湿交替过程中草地生态系统土壤呼吸的微生物学响应机制,更准确地预测和评估未来的全球陆地生态系统的碳收支与气候变化提供一定的理论基础.  相似文献   

14.
Respiration of heterotrophic microorganisms decomposing soil organic carbon releases carbon dioxide from soils to the atmosphere. In the short term, soil microbial respiration is strongly dependent on temperature. In the long term, the response of heterotrophic soil respiration to temperature is uncertain. However, following established evolutionary trade‐offs, mass‐specific respiration (Rmass) rates of heterotrophic soil microbes should decrease in response to sustained increases in temperature (and vice‐versa). Using a laboratory microcosm approach, we tested the potential for the Rmass of the microbial biomass in six different soils to adapt to three, experimentally imposed, thermal regimes (constant 10, 20 or 30 °C). To determine Rmass rates of the heterotrophic soil microbial biomass across the temperature range of the imposed thermal regimes, we periodically assayed soil subsamples using similar approaches to those used in plant, animal and microbial thermal adaptation studies. As would be expected given trade‐offs between maximum catalytic rates and the stability of the binding structure of enzymes, after 77 days of incubation Rmass rates across the range of assay temperatures were greatest for the 10 °C experimentally incubated soils and lowest for the 30 °C soils, with the 20 °C incubated soils intermediate. The relative magnitude of the difference in Rmass rates between the different incubation temperature treatments was unaffected by assay temperature, suggesting that maximum activities and not Q10 were the characteristics involved in thermal adaptation. The time taken for changes in Rmass to manifest (77 days) suggests they likely resulted from population or species shifts during the experimental incubations; we discuss alternate mechanistic explanations for those results we observed. A future research priority is to evaluate the role that thermal adaptation plays in regulating heterotrophic respiration rates from field soils in response to changing temperature, whether seasonally or through climate change.  相似文献   

15.
Changes in labile carbon (LC) pools and microbial communities are the primary factors controlling soil heterotrophic respiration (Rh) in warming experiments. Warming is expected to initially increase Rh but studies show this increase may not be continuous or sustained. Specifically, LC and soil microbiome have been shown to contribute to the effect of extended warming on Rh. However, their relative contribution is unclear and this gap in knowledge causes considerable uncertainty in the prediction of carbon cycle feedbacks to climate change. In this study, we used a two‐step incubation approach to reveal the relative contribution of LC limitation and soil microbial community responses in attenuating the effect that extended warming has on Rh. Soil samples from three Tibetan ecosystems—an alpine meadow (AM), alpine steppe (AS), and desert steppe (DS)—were exposed to a temperature gradient of 5–25°C. After an initial incubation period, soils were processed in one of two methods: (a) soils were sterilized then inoculated with parent soil microbes to assess the LC limitation effects, while controlling for microbial community responses; or (b) soil microbes from the incubations were used to inoculate sterilized parent soils to assess the microbial community effects, while controlling for LC limitation. We found both LC limitation and microbial community responses led to significant declines in Rh by 37% and 30%, respectively, but their relative contributions were ecosystem specific. LC limitation alone caused a greater Rh decrease for DS soils than AMs or ASs. Our study demonstrates that soil carbon loss due to Rh in Tibetan alpine soils—especially in copiotrophic soils—will be weakened by microbial community responses under short‐term warming.  相似文献   

16.
土壤呼吸是森林生态系统碳循环的关键过程,土壤动物可通过自身代谢及影响微生物活动调控土壤呼吸,因此研究土壤动物与土壤呼吸的相互关系对进一步揭示生态系统碳循环的规律和机理具有重要意义。通过野外定点,以帽儿山3种森林生态系统的土壤呼吸及土壤动物为研究对象,探讨不同森林生态系统的土壤呼吸、土壤动物个体密度和生物量的时间变化规律及二者相互关系。结果表明:(1)3种森林生态系统土壤总呼吸速率与土壤异养呼吸速率均呈现先增强后减弱的时间动态变化(P<0.05),且不同森林生态系统土壤异养呼吸速率差异显著(P<0.05),表现为硬阔叶林最高,红松人工林最低;(2)3种森林生态系统土壤动物生物量也具有显著的时间动态变化(P<0.05),均在9月份达到最大,且不同森林生态系统土壤动物个体密度显著不同(P<0.05),蒙古栎林土壤动物个体密度显著小于红松人工林与硬阔叶林;(3)通过回归分析可得,土壤动物数量及生物量的增加抑制了土壤呼吸速率,尤其在生长季初期、末期。研究表明土壤动物可通过抑制微生物生命活动和降低根系呼吸从而对土壤总呼吸及异养呼吸产生负反馈作用,三者是不可分割的整体,与土壤温度、水分等环境因子共同调控着土壤呼吸。  相似文献   

17.
Although there is a widespread belief that phosphorus (P) limits basic ecosystem processes in moist tropical forests, direct tests of this supposition are rare. At the same time, it is generally believed that P does not limit soil microorganism respiration or growth in terrestrial ecosystems. We used natural gradients in P fertility created by soils of varying age underlying tropical rain forests in southwestern Costa Rica, combined with direct manipulations of carbon (C) and P supply, to test the effects of P availability on the decomposition of multiple forms of C, including dissolved organic carbon (DOC) and soil organic carbon (SOC). Results from a combination of laboratory and field experiments suggest that C decomposition in old, highly weathered oxisol soils is strongly constrained by P availability. In addition, P additions to these soils (no C added) also revealed that microbial utilization of at least labile fractions of SOC was also P limited. To our knowledge, this is the first direct evidence of P limitation of microbial processes in tropical rain forest soil. We suggest that P limitation of microbial decomposition may have profound implications for C cycling in moist tropical forests, including their potential response to increasing atmospheric carbon dioxide. Furthermore, this site is still relatively rich in P when compared to many other tropical forests on old soils; thus, we believe that P limitation of soil microorganisms throughout the humid tropics is a possibility.  相似文献   

18.
土壤呼吸组分对气候变暖的响应研究进展   总被引:6,自引:0,他引:6  
马志良  赵文强  刘美  朱攀  刘庆 《应用生态学报》2018,29(10):3477-3486
气候变暖正在深刻地改变全球碳循环过程.土壤呼吸作为全球碳循环的重要环节,连接着植物-土壤-微生物之间的碳转移过程.土壤呼吸可分为异养呼吸和根源呼吸(根系呼吸和根际微生物呼吸)等组分.土壤呼吸各组分的发生部位与利用的有机碳源不同,其对气候变暖的响应可能存在显著差异.然而,目前的研究还不能完全实现土壤呼吸各组分的精确区分和量化,气候变暖对土壤呼吸各组分的影响及其具体机制仍存在很多悬而未决的问题,这极大地限制了人们对土壤碳循环评估的精确性以及对气候变暖背景下陆地生态系统碳收支格局变化的认识.本文系统综述了目前国内外土壤呼吸组分区分技术,分析了土壤呼吸组分区分的研究结果,并论述了土壤呼吸各组分对气候变暖的响应研究进展.提出仍需发展新的土壤呼吸组分区分技术或者改进和创新现有技术,未来的研究重点应放在精确区分野外条件下根源呼吸组分,同时开展土壤呼吸组分对多种环境因子变化的响应研究,以期更全面地认识土壤碳循环过程以及全球变化背景下陆地生态系统碳收支的变化趋势.  相似文献   

19.
The relationship between microbial respiration rate and soil moisture content is an important property for understanding and predicting soil organic carbon degradation, CO2 production and emission, and their subsequent effects on climate change. This paper reports a pore-scale modeling study to investigate the response of heterotrophic respiration to moisture conditions in soils and to evaluate various factors that affect this response. X-ray computed tomography was used to derive soil pore structures, which were then used for pore-scale model investigation. The pore-scale results were then averaged to calculate the effective respiration rates as a function of water content in soils. The calculated effective respiration rate first increases and then decreases with increasing soil water content, showing a maximum respiration rate at water saturation degree of 0.75, which is consistent with field and laboratory observations. The relationship between the respiration rate and moisture content is affected by various factors, including pore-scale organic carbon bioavailability, the rate of oxygen delivery, soil pore structure and physical heterogeneity, soil clay content, and microbial drought resistivity. Overall, this study provides mechanistic insights into the soil respiration response to the change in moisture conditions, and reveals a complex relationship between heterotrophic microbial respiration rate and moisture content in soils that is affected by various hydrological, geophysical, and biochemical factors.  相似文献   

20.
土壤呼吸会影响全球碳循环,而湿地水位与土壤呼吸息息相关。然而,由于原位观测有限,目前尚不清楚高寒沼泽土壤呼吸及其组分如何响应水位下降。在若尔盖高原纳勒乔沼泽建立了水位下降控制实验平台,定位监测土壤呼吸及其组分的变化,并初步探讨土壤呼吸及其组分与生物和非生物因素的潜在联系。结果发现,水位下降对高寒草本沼泽土壤呼吸(Rs)没有显著影响,但自养呼吸(Ra)和异氧呼吸(Rh)对水位下降表现出明显不同反应。其中,自养呼吸速率下降了67.2%,异养呼吸速率上升了67.3%。异养呼吸和自养呼吸在土壤呼吸中的占比发生显著变化,水位下降后,Rh/Rs较对照增加了88%,Ra/Rs减少了61%。水位下降引起的自养呼吸和异养呼吸变化的驱动因素不同,植株高度、地上及地下生物量解释了自养呼吸的变化,土壤温度、C:N则是异氧呼吸变化的关键影响因素。综上,在高寒草本沼泽生态系统中,水位下降对土壤呼吸组分的影响强度及其驱动因素存在明显差异,这需要在陆地表层碳循环模型中加以考虑,以便更好评估高寒草本沼泽碳循环对气候变化的反馈作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号