首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells.  相似文献   

2.
Increasing evidence suggests that bone marrow-derived mesenchymal stem cells (MSCs) are recruited into the stroma of developing tumors where they contribute to cancer progression. MSCs produce different growth factors that sustain tumor-associated neo-angiogenesis. Since the majority of carcinomas secrete ligands of the epidermal growth factor receptor (EGFR), we assessed the role of EGFR signaling in regulating the release of angiogenic factors in MSCs. Treatment of human primary MSCs and of the human osteoblastic cell line hFOB with transforming growth factor α (TGF-α), one of the main ligands of the EGFR, significantly induced activation of this receptor and of different intracellular signaling proteins, including the PI3K/AKT and the MEK/MAPK pathways. TGF-α induced a significant increase in the levels of secretion of vascular endothelial growth factor in both MSCs and hFOB. Conditioned medium from TGF-α treated MSCs showed an higher in vivo angiogenic effect as compared with medium from untreated cells. Treatment of MSCs with TGF-α also produced a significant increase in the secretion of other angiogenic growth factors such as angiopoietin-2, granulocyte-colony stimulating factor, hepatocyte growth factor, interleukin (IL)-6, IL-8, and platelet-derived growth factor-BB. Using selective MEK and PI3K inhibitors, we found that both MEK/MAPK and the PI3K/AKT signaling pathways mediate the ability of TGF-α to induce secretion of angiogenic factors in MSCs. Finally, stimulation with TGF-α increased the ability of MSCs to induce migration of MCF-7 breast cancer cells. These data suggest that EGFR signaling regulates the ability of MSCs to sustain cancer progression through the release of growth factors that promote neo-angiogenesis and tumor cell migration.  相似文献   

3.
Diffuse intrinsic pontine glioma (DIPG) is a devastating disease with an extremely poor prognosis. Recent studies have shown that platelet-derived growth factor receptor (PDGFR) and its downstream effector pathway, PI3K/AKT/mTOR, are frequently amplified in DIPG, and potential therapies targeting this pathway have emerged. However, the addition of targeted single agents has not been found to improve clinical outcomes in DIPG, and targeting this pathway alone has produced insufficient clinical responses in multiple malignancies investigated, including lung, endometrial, and bladder cancers. Acquired resistance also seems inevitable. Activation of the Ras/Raf/MEK/ERK pathway, which shares many nodes of cross talk with the PI3K/AKT pathway, has been implicated in the development of resistance. In the present study, perifosine, a PI3K/AKT pathway inhibitor, and trametinib, a MEK inhibitor, were combined, and their therapeutic efficacy on DIPG cells was assessed. Growth delay assays were performed with each drug individually or in combination. Here, we show that dual inhibition of PI3K/AKT and MEK/ERK pathways synergistically reduced cell viability. We also reveal that trametinib induced AKT phosphorylation in DIPG cells that could not be effectively attenuated by the addition of perifosine, likely due to the activation of other compensatory mechanisms. The synergistic reduction in cell viability was through the pronounced induction of apoptosis, with some effect from cell cycle arrest. We conclude that the concurrent inhibition of the PI3K/AKT and MEK/ERK pathways may be a potential therapeutic strategy for DIPG.  相似文献   

4.
谭晓红  杨晓 《生命科学》2011,(4):353-358
针对表皮生长因子受体(EGFR)和血管生成(angiogenesis)信号通路的靶向治疗已经在晚期非小细胞肺癌的治疗上取得成功,但由于抗药性的存在,大多数晚期患者的生存时间仍然提高有限。继发性的EGFR T790M突变和原癌基因肝细胞生长因子受体(MET)的扩增被鉴定为两种主要的抗药机制。最近转化生长因子-β(TGF-β)/白介素-6信号通路被报道能介导选择性和适应性地对erlotinib的抗药。另一方面,Kras突变所致肺癌的靶向治疗方面也取得了一些进展。双重抑制磷脂酰肌醇3-激酶(PI3K)和促分裂素原活化蛋白激酶激酶(MEK)信号通路可导致Kras突变肿瘤的显著消退,联合抑制SRC、PI3K和MEK可使丝氨酸/苏氨酸蛋白激酶11(Lkb1)缺失,Kras突变的肺癌小鼠的肿瘤明显消退,抑制核因子-κB(NF-κB)信号通路导致p53缺失,Kras突变的肿瘤发展显著减慢。这些发现都为发展非小细胞肺癌患者的靶向治疗提供了有力的支持。  相似文献   

5.
6.
The epidermal growth factor receptor (EGFR) signaling network is activated in most solid tumors, and small‐molecule drugs targeting this network are increasingly available. However, often only specific combinations of inhibitors are effective. Therefore, the prediction of potent combinatorial treatments is a major challenge in targeted cancer therapy. In this study, we demonstrate how a model‐based evaluation of signaling data can assist in finding the most suitable treatment combination. We generated a perturbation data set by monitoring the response of RAS/PI3K signaling to combined stimulations and inhibitions in a panel of colorectal cancer cell lines, which we analyzed using mathematical models. We detected that a negative feedback involving EGFR mediates strong cross talk from ERK to AKT. Consequently, when inhibiting MAPK, AKT activity is increased in an EGFR‐dependent manner. Using the model, we predict that in contrast to single inhibition, combined inactivation of MEK and EGFR could inactivate both endpoints of RAS, ERK and AKT. We further could demonstrate that this combination blocked cell growth in BRAF‐ as well as KRAS‐mutated tumor cells, which we confirmed using a xenograft model.  相似文献   

7.
Phosphatidylinositol 3 kinase (PI3K)/AKT (also called protein kinase B, PKB) signalling regulates various cellular processes, such as apoptosis, cell proliferation, the cell cycle, protein synthesis, glucose metabolism, and telomere activity. Corneal epithelial cells (CECs) are the outermost cells of the cornea; they maintain good optical performance and act as a physical and immune barrier. Various growth factors, including epidermal growth factor receptor (EGFR) ligands, insulin-like growth factor 1 (IGF1), neurokinin 1 (NK-1), and insulin activate the PI3K/AKT signalling pathway by binding their receptors and promote antiapoptotic, anti-inflammatory, proliferative, and migratory functions and wound healing in the corneal epithelium (CE). Reactive oxygen species (ROS) regulate apoptosis and inflammation in CECs in a concentration-dependent manner. Extreme environments induce excess ROS accumulation, inhibit PI3K/AKT, and cause apoptosis and inflammation in CECs. However, at low or moderate levels, ROS activate PI3K/AKT signalling, inhibiting apoptosis and stimulating proliferation of healthy CECs. Diabetes-associated hyperglycaemia directly inhibit PI3K/AKT signalling by increasing ROS and endoplasmic reticulum (ER) stress levels or suppressing the expression of growth factors receptors and cause diabetic keratopathy (DK) in CECs. Similarly, hyperosmolarity and ROS accumulation suppress PI3K/AKT signalling in dry eye disease (DED). However, significant overactivation of the PI3K/AKT signalling pathway, which mediates inflammation in CECs, is observed in both infectious and noninfectious keratitis. Overall, upon activation by growth factors and NK-1, PI3K/AKT signalling promotes the proliferation, migration, and anti-apoptosis of CECs, and these processes can be regulated by ROS in a concentration-dependent manner. Moreover, PI3K/AKT signalling pathway is inhibited in CECs from individuals with DK and DED, but is overactivated by keratitis.Subject terms: Growth factor signalling, Apoptosis, Extracellular matrix  相似文献   

8.
The epidermal growth factor receptor (EGFR) is linked to the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Raf/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling pathways. During brain ischemia/reperfusion, EGFR could be transactivated, which stimulates these intracellular signaling cascades that either protect cells or potentiate cell injury. In the present study, we investigated the activation of EGFR, PI3K/AKT, and Raf/MAPK/ERK1/2 during ischemia or reperfusion of the brain using the middle cerebral artery occlusion model. We found that EGFR was phosphorylated and transactivated during both ischemia and reperfusion periods. During ischemia, the activity of PI3K/AKT pathway was significantly increased, as judged from the strong phosphorylation of AKT; this activation was suppressed by the inhibitors of EGFR and Zn-dependent metalloproteinase. Ischemia, however, did not induce ERK1/2 phosphorylation, which was dependent on reperfusion. Coimmunoprecipitation of Son of sevenless 1 (SOS1) with EGFR showed increased association between the receptor and SOS1 in ischemia, indicating the inhibitory node downstream of SOS1. The inhibitory phosphorylation site of Raf-1 at Ser259, but not its stimulatory phosphorylation site at Ser338, was phosphorylated during ischemia. Furthermore, ischemia prompted the interaction between Raf-1 and AKT, while both the inhibitors of PI3K and AKT not only abolished AKT phosphorylation but also restored ERK1/2 phosphorylation. All these findings suggest that Raf/MAPK/ERK1/2 signal pathway is inhibited by AKT via direct phosphorylation and inhibition at Raf-1 node during ischemia. During reperfusion, we observed a significant increase of ERK1/2 phosphorylation but no change in AKT phosphorylation. Inhibitors of reactive oxygen species and phosphatase and tensin homolog restored AKT phosphorylation but abolished ERK1/2 phosphorylation, suggesting that the reactive oxygen species-dependent increase in phosphatase and tensin homolog activity in reperfusion period relieves ERK1/2 from inhibition of AKT.  相似文献   

9.

Background

Malignant melanoma is an aggressive tumor of the skin and seems to be resistant to current therapeutic approaches. Melanocytic transformation is thought to occur by sequential accumulation of genetic and molecular alterations able to activate the Ras/Raf/MEK/ERK (MAPK) and/or the PI3K/AKT (AKT) signalling pathways. Specifically, mutations of B-RAF activate MAPK pathway resulting in cell cycle progression and apoptosis prevention. According to these findings, MAPK and AKT pathways may represent promising therapeutic targets for an otherwise devastating disease.

Result

Here we show a computational model able to simulate the main biochemical and metabolic interactions in the PI3K/AKT and MAPK pathways potentially involved in melanoma development. Overall, this computational approach may accelerate the drug discovery process and encourages the identification of novel pathway activators with consequent development of novel antioncogenic compounds to overcome tumor cell resistance to conventional therapeutic agents. The source code of the various versions of the model are available as S1 Archive.  相似文献   

10.

Background

The sustained clinical activity of the BRAF inhibitor vemurafenib (PLX4032/RG7204) in patients with BRAFV600 mutant melanoma is limited primarily by the development of acquired resistance leading to tumor progression. Clinical trials are in progress using MEK inhibitors following disease progression in patients receiving BRAF inhibitors. However, the PI3K/AKT pathway can also induce resistance to the inhibitors of MAPK pathway.

Methodology/Principal Findings

The sensitivity to vemurafenib or the MEK inhibitor AZD6244 was tested in sensitive and resistant human melanoma cell lines exploring differences in activation-associated phosphorylation levels of major signaling molecules, leading to the testing of co-inhibition of the AKT/mTOR pathway genetically and pharmacologically. There was a high degree of cross-resistance to vemurafenib and AZD6244, except in two vemurafenib-resistant cell lines that acquired a secondary mutation in NRAS. In other cell lines, acquired resistance to both drugs was associated with persistence or increase in activity of AKT pathway. siRNA-mediated gene silencing and combination therapy with an AKT inhibitor or rapamycin partially or completely reversed the resistance.

Conclusions/Significance

Primary and acquired resistance to vemurafenib in these in vitro models results in frequent cross resistance to MEK inhibitors, except when the resistance is the result of a secondary NRAS mutation. Resistance to BRAF or MEK inhibitors is associated with the induction or persistence of activity within the AKT pathway in the presence of these drugs. This resistance can be potentially reversed by the combination of a RAF or MEK inhibitor with an AKT or mTOR inhibitor. These combinations should be available for clinical testing in patients progressing on BRAF inhibitors.  相似文献   

11.
Our previous studies on cardiac myocytes showed that positive inotropic concentrations of the digitalis drug ouabain activated signaling pathways linked to Na(+)-K(+)-ATPase through Src and epidermal growth factor receptor (EGFR) and led to myocyte hypertrophy. In view of the known involvement of phosphatidylinositol 3-kinase (PI3K)-Akt pathways in cardiac hypertrophy, the aim of the present study was to determine whether these pathways are also linked to cardiac Na(+)-K(+)-ATPase and, if so, to assess their role in ouabain-induced myocyte growth. In a dose- and time-dependent manner, ouabain activated Akt and phosphorylation of its substrates mammalian target of rapamycin and glycogen synthase kinase in neonatal rat cardiac myocytes. Akt activation by ouabain was sensitive to PI3K inhibitors and was also noted in adult myocytes and isolated hearts. Ouabain caused a transient increase of phosphatidylinositol 3,4,5-trisphosphate content of neonatal myocytes, activated class IA, but not class IB, PI3K, and increased coimmunoprecipitation of the alpha-subunit of Na(+)-K(+)-ATPase with the p85 subunit of class IA PI3K. Ouabain-induced activation of ERK1/2 was prevented by Src, EGFR, and MEK inhibitors, but not by PI3K inhibitors. Activation of Akt by ouabain, however, was sensitive to inhibitors of PI3K and Src, but not to inhibitors of EGFR and MEK. Similarly, ouabain-induced myocyte hypertrophy was prevented by PI3K and Src inhibitors, but not by an EGFR inhibitor. These findings 1) establish the linkage of the class IA PI3K-Akt pathway to Na(+)-K(+)-ATPase and the essential role of this linkage to ouabain-induced myocyte hypertrophy and 2) suggest cross talk between these PI3K-Akt pathways and the signaling cascades previously identified to be associated with cardiac Na(+)-K(+)-ATPase.  相似文献   

12.
The signalling pathways leading to the development of Helicobacter pylori -induced gastric cancer remain poorly understood. We tested the hypothesis that H. pylori infections involve the activation of Akt signalling in human gastric epithelial cancer cells. Immunoblot, immunofluorescence and kinase assays show that H. pylori infection of gastric epithelial cells induced phosphorylation of Akt at Ser 473 and Thr 308. Mutations in the H. pylori virulence factor OipA dramatically reduced phosphorylation of Ser 473, while the cag pathogenicity island mutants predominantly inhibited phosphorylation of Thr 308. As the downstream of Akt activation, H. pylori infection inactivated the inactivation of glycogen synthase kinase 3β at Ser 9 by its phosphorylation. As the upstream of Akt activation, H. pylori infection activated epidermal growth factor receptor (EGFR) at Tyr 992, phosphatidylinositol 3-OH kinase (PI3K) p85 subunit and PI3K-dependent kinase 1 at Ser 241. Pharmacologic inhibitors of PI3K or mitogen-activated protein kinase kinase (MEK), Akt knock-down and EGFR knock-down showed that H. pylori infection induced the activation of EGFR→PI3K→PI3K-dependent kinase 1→Akt→extracellular signal-regulated kinase signalling pathways, the inactivation of glycogen synthase kinase 3β and interleukin-8 production. The combined functions of cag pathogenicity island and OipA were necessary and sufficient for full activation of signalling at each level. We propose activation of these pathways as a novel mechanism for H. pylori -mediated carcinogenesis.  相似文献   

13.
表皮生长因子受体与肺脏发育的关系   总被引:1,自引:0,他引:1  
Li HJ  Liu Y  Hao HS  DU WH  Zhao XM  Wang D  Qin T  Ma YJ  Zhu HB 《遗传》2012,34(1):27-32
表皮生长因子受体(Epidermal growth factor receptor,EGFR)是一种跨膜蛋白受体,是ErbB家族成员之一,具有酪氨酸激酶活性。EGFR与相应的配体结合引起EGFR形成同源或异源二聚体启动胞内信号转导,激活下游多种信号转导途径,产生生物学效应,RAS/RAF/MEK/ERK通路与细胞增殖、分化和凋亡有关;PI3K/PDK1/AKT通路与细胞的迁移和粘附有关。EGFR能促进肺泡II型上皮细胞的成熟和肺表面活性物质的合成、分泌。EGFR对哺乳动物肺脏的作用呈现时空效应及剂量依赖效应,EGFR的下调表达则会引起肺脏发育不成熟;而EGFR过度表达促进肺肿瘤细胞的增殖、侵袭和转移。文章综述了EGFR及其调节信号通路的研究进展,以及EGFR与动物肺脏发育不成熟和肺癌之间的关系。  相似文献   

14.
Human mucosal melanoma (MM), an uncommon, aggressive and diverse subtype, shares characteristics with spontaneous MM in dogs. Although BRAF and N‐RAS mutations are uncommon in MM in both species, the majority of human and canine MM evaluated exhibited RAS/ERK and/or PI3K/mTOR signaling pathway activation. Canine MM cell lines, with varying ERK and AKT/mTOR activation levels reflective of naturally occurring differences in dogs, were sensitive to the MEK inhibitor GSK1120212 and dual PI3K/mTOR inhibitor NVP‐BEZ235. The two‐drug combination synergistically decreased cell survival in association with caspase 3/7 activation, as well as altered expression of cell cycle regulatory proteins and Bcl‐2 family proteins. In combination, the two drugs targeted their respective signaling pathways, potentiating reduction of pathway mediators p‐ERK, p‐AKT, p‐S6, and 4E‐BP1 in vitro, and in association with significantly inhibited solid tumor growth in MM xenografts in mice. These findings provide evidence of synergistic therapeutic efficacy when simultaneously targeting multiple mediators in melanoma with Ras/ERK and PI3K/mTOR pathway activation.  相似文献   

15.
PI3K-mammalian target of rapamycin and MAPK/ERK kinase (MEK)/mitogen-activated protein kinase (MAPK) are the most frequently dysregulated signaling pathways in cancer. A problem that limits the success of therapies that target individual PI3K-MAPK members is that these pathways converge to regulate downstream functions and often compensate each other, leading to drug resistance and transient responses to therapy. In order to overcome resistance, therapies based on cotreatments with PI3K/AKT and MEK/MAPK inhibitors are now being investigated in clinical trials, but the mechanisms of sensitivity to cotreatment are not fully understood. Using LC-MS/MS-based phosphoproteomics, we found that eukaryotic elongation factor 2 kinase (eEF2K), a key convergence point downstream of MAPK and PI3K pathways, mediates synergism to cotreatment with trametinib plus pictilisib (which target MEK1/2 and PI3Kα/δ, respectively). Inhibition of eEF2K by siRNA or with a small molecule inhibitor reversed the antiproliferative effects of the cotreatment with PI3K plus MEK inhibitors in a cell model–specific manner. Systematic analysis in 12 acute myeloid leukemia cell lines revealed that eEF2K activity was increased in cells for which PI3K plus MEKi cotreatment is synergistic, while PKC potentially mediated resistance to such cotreatment. Together, our study uncovers eEF2K activity as a key mediator of responses to PI3Ki plus MEKi and as a potential biomarker to predict synergy to cotreatment in cancer cells.  相似文献   

16.

Background

Epidermal growth factor receptor (EGFR) is widely expressed in multiple solid tumors including colorectal cancer by promoting cancer cell growth and proliferation. Therefore, the inhibition of EGFR activity may establish a clinical strategy of cancer therapy.

Methods

In this study, using human colon adenocarcinoma HT29 and SW480 cells as research models, we compared the efficacy of four EGFR inhibitors in of EGFR-mediated pathways, including the novel irreversible inhibitor 324674, conventional reversible inhibitor AG1478, dual EGFR/HER2 inhibitor GW583340 and the pan-EGFR/ErbB2/ErbB4 inhibitor. Cell proliferation was assessed by MTT analysis, and apoptosis was evaluated by the Annexin-V binding assay. EGFR and its downstream signaling effectors were examined by western blotting analysis.

Results

Among the four inhibitors, the irreversible EGFR inhibitor 324674 was more potent at inhibiting HT29 and SW480 cell proliferation and was able to efficiently induce apoptosis at lower concentrations. Western blotting analysis revealed that AG1478, GW583340 and pan-EGFR/ErbB2/ErbB4 inhibitors failed to suppress EGFR activation as well as the downstream mitogen-activated protein kinase (MAPK) and PI3K/AKT/mTOR (AKT) pathways. In contrast, 324674 inhibited EGFR activation and the downstream AKT signaling pathway in a dose-dependent manner.

Conclusion

Our studies indicated that the novel irreversible EGFR inhibitor 324674 may have a therapeutic application in colon cancer therapy.  相似文献   

17.
Multiple signal transduction pathways, including the Raf/MEK/ERK and PI3K/Akt kinase cascades, play critical roles in transducing growth signals from activated cell surface receptors. Using conditionally and constitutively-active forms of MEK1 and either PI3K or Akt, we demonstrate synergy between these kinases in relieving cytokine-dependence of the FDC-P1 hematopoietic cell line. Cytokine-independent cells were obtained from ?MEK1:ER-infected cells at a frequency of 5 x 10-5 indicating that low frequency of cells expressing ?-estradiol-regulated ?MEK1:ER became factor-independent, while activated PI3K or Akt by themselves did not relieve cytokine-dependence. In contrast, cytokine-independent cells were recovered approximately 25 to 250-fold more frequently from ?MEK1:ER infected cells also infected with either activated PI3K or Akt. MEK/PI3K and MEK/Akt-responsive cells could be maintained long-term as long as either ?-estradiol or the estrogen receptor antagonist 4-hydroxy-tamoxifen (4HT) were provided. The MEK/PI3K/Akt responsive cells were sensitive to both MEK and PI3K/Akt/p70S6K inhibitors. Synergy was observed when inhibitors which targeted both pathways were added together. These results indicate that there is synergy between the Raf/MEK/ERK and PI3K/Akt pathways in terms of abrogation of cytokine-dependence of hematopoietic cells. Likewise, suppression of multiple signal transduction pathways is a more effective means to inhibit cell cycle progression and induce apoptosis in leukemic cells.  相似文献   

18.
Malignant conversion of BRAF‐ or NRAS‐mutated melanocytes into melanoma cells can be promoted by PI3′‐lipid signaling. However, the mechanism by which PI3′‐lipid signaling cooperates with mutationally activated BRAF or NRAS has not been adequately explored. Using human NRAS‐ or BRAF‐mutated melanoma cells that co‐express mutationally activated PIK3CA, we explored the contribution of PI3′‐lipid signaling to cell proliferation. Despite mutational activation of PIK3CA, melanoma cells were more sensitive to the biochemical and antiproliferative effects of broader spectrum PI3K inhibitors than to an α‐selective PI3K inhibitor. Combined pharmacological inhibition of MEK1/2 and PI3K signaling elicited more potent antiproliferative effects and greater inhibition of the cell division cycle compared to single‐agent inhibition of either pathway alone. Analysis of signaling downstream of MEK1/2 or PI3K revealed that these pathways cooperate to regulate cell proliferation through mTORC1‐mediated effects on ribosomal protein S6 and 4E‐BP1 phosphorylation in an AKT‐dependent manner. Although PI3K inhibition resulted in cytostatic effects on xenografted NRASQ61H/PIK3CAH1047R melanoma, combined inhibition of MEK1/2 plus PI3K elicited significant melanoma regression. This study provides insights as to how mutationally activated PIK3CA acts in concert with MEK1/2 signaling to cooperatively regulate mTORC1/2 to sustain PIK3CA‐mutated melanoma proliferation.  相似文献   

19.
Multiple signal transduction pathways, including the Raf/MEK/ERK and PI3K/Akt kinase cascades, play critical roles in transducing growth signals from activated cell surface receptors. Using conditionally and constitutively-active forms of MEK1 and either PI3K or Akt, we demonstrate synergy between these kinases in relieving cytokine-dependence of the FDC-P1 hematopoietic cell line. Cytokine-independent cells were obtained from DeltaMEK1:ER-infected cells at a frequency of 5 x 10(-5) indicating that low frequency of cells expressing beta-estradiol-regulated DeltaMEK1:ER became factor-independent, while activated PI3K or Akt by themselves did not relieve cytokine-dependence. In contrast, cytokine-independent cells were recovered approximately 25 to 250-fold more frequently from DeltaMEK1:ER infected cells also infected with either activated PI3K or Akt. MEK/PI3K and MEK/Akt-responsive cells could be maintained long-term as long as either beta-estradiol or the estrogen receptor antagonist 4-hydroxy-tamoxifen (4HT) were provided. The MEK/PI3K/Akt responsive cells were sensitive to both MEK and PI3K/Akt/p70S6K inhibitors. Synergy was observed when inhibitors which targeted both pathways were added together. These results indicate that there is synergy between the Raf/MEK/ERK and PI3K/Akt pathways in terms of abrogation of cytokine-dependence of hematopoietic cells. Likewise, suppression of multiple signal transduction pathways is a more effective means to inhibit cell cycle progression and induce apoptosis in leukemic cells.  相似文献   

20.
Triple‐negative breast cancers (TNBCs) are known to be intrinsically resistant to inhibitors for epidermal growth factor receptor (EGFR). Until now, clinical trials for TNBCs using EGFR inhibitors (EGFRis) as single agents have yielded disappointing results. Here, we report that combinatorial treatment using EGFRis, such as gefitinib or erlotinib, with PI3K/AKT pathway inhibitors (PI3K/AKTis) demonstrated a synergistic, anti‐proliferative effect in cell lines of the basal‐like (BL) subtype, a subtype of TNBC. Western blot analysis revealed that the gefitinib/PI‐103 combination significantly reduced the level of both phospho‐AKT and phospho‐ERK in two susceptible BL subtype cell lines, SUM149PT and MDA‐MB‐468, whereas it had little or no effect on the level of phospho‐ERK in two non‐susceptible cell lines (HS578T and MDA‐MB‐231) of mesenchymal stem‐like (MSL) TNBC subtype. The gefitinib/PI‐103 combination also significantly induced caspase‐3/7‐mediated PARP cleavage and reduced two anti‐apoptotic proteins, XIAP and Bcl‐2 in the susceptible cell lines. In addition, the level of myeloid cell leukemia 1 (Mcl‐1) protein was markedly decreased by gefitinib/PI‐103 combination in the BL TNBC cells, but showed no significant change by this combination in MSL subtype cells. These results suggest that pharmacological inhibition of EGFR used in combination of PI3K/AKTis is a potential therapeutic approach to treat a subtype of TNBCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号