首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Mastitis, an inflammation of mammary gland, is a serious disease that affects the health of dairy cows around the world. Myricetin, a flavonoid from Bayberry, has been reported to suppress various inflammatory response. The aim of this study was to evaluate the effect of myricetin on lipopolysaccharide (LPS)-induced in vivo and in vitro mastitis model and clarify the underlying mechanism. In vivo experiments, myricetin attenuated the severity of inflammatory lesion and neutrophil infiltration. Moreover, myricetin pretreatment induced a significant decrease in the activity of myeloperoxidase (MPO) and the production of TNF-α, IL-6, and IL-1β triggered by LPS. Myricetin pretreatment could also increase the integrity of the blood–milk barrier and upregulate the tight junction proteins in LPS-induced mice mastitis. In vitro, myricetin inhibited LPS-induced inflammatory response in mice mammary epithelial cells (mMECs). In the further mechanism studies, we found that the anti-inflammatory effect of myricetin was mediated by inhibiting LPS-induced phosphorylation of AKT, IKK-α, IκB-α, and P65 in vivo and in vitro. Collectively, these data suggested that myricetin effectively ameliorated the inflammatory response by inhibiting the AKT/IKK/NF-κB signaling pathway and repairing the integrity of blood–milk barrier in LPS-induced mice mastitis.  相似文献   

2.
《Free radical research》2013,47(12):1459-1468
The purpose of the present study was to investigate the protective effect of esculetin (ES) in lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the lung epithelial A549 cells. Mice were intragastrically administered with ES (20 and 40 mg/kg) 1 h prior to LPS challenge. ES pretreatment at doses of 20 and 40 mg/kg effectively attenuated LPS-induced lung histopathological change, myeloperoxidase or MPO activity, inflammatory cells infiltration, pulmonary wet-to-dry weight ratio, and the generation of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in vivo and in vitro. Furthermore, we demonstrated that ES blocked the activation of NF-кB and RhoA/Rho kinase pathways in LPS-induced mice and A549 cells. The results suggested that ES exhibited protective effect on ALI and might attribute partly to the inhibition of NF-кB and RhoA/Rho kinase pathways in vivo and in vitro.  相似文献   

3.
In periodontitis, alveolar bone resorption is induced by excessive host immune and inflammatory response against bacterial infection. Secretory leukocyte protease inhibitor (SLPI) has anti-bacterial and anti-inflammatory activity in inflammatory responses. SLPI inhibits joint inflammation and bone destruction, but the function of SLPI in periodontitis is unclear. Therefore, this study investigated whether SLPI inhibits the inflammatory response and alveolar bone resorption in LPS-induced periodontitis of rats. Micro-computed tomography and histological analysis showed that SLPI inhibited alveolar bone resorption by LPS-induced periodontitis. Immunohistochemistry revealed that SLPI decreased tumor necrosis factor-α (TNF-α) and interleukine-1β (IL-1β) expression in periodontitis tissue, and decreased mRNA and protein expression of TNF-α and IL-1β in LPS-stimulated MC3T3-E1 cells. The results indicated that SLPI reduced alveolar bone resorption in LPS-induced periodontitis and inhibited inflammatory cytokine, such as TNF-α and IL-1β, expression in LPS-stimulated MC3T3-E1 preosteoblasts. Therefore, SLPI could be a regulatory molecule by inhibiting alveolar bone resorption through the reduction of inflammatory cytokines, and inducing osteoblast activation for bone formation.  相似文献   

4.
《Cytokine》2014,67(2):127-132
In tegumentary leishmaniasis caused by Leishmania braziliensis, there is evidence that increased production of IFN-γ, TNF-α and absence of IL-10 is associated with strong inflammatory reaction and with tissue destruction and development of the lesions observed in cutaneous leishmaniasis (CL) and mucosal leishmaniasis (ML). We evaluate the role of regulatory cytokines and cytokine antagonists in the downregulation of immune response in L. braziliensis infection. Peripheral blood mononuclear cells from CL and ML were stimulated with soluble Leishmania antigen in the presence or absence of regulatory cytokines (IL-10, IL-27 and TGF-β) or antagonists of cytokines (α-TNF-α and α-IFN-γ). Cytokines production (IL-10, IL-17, TNF-α and IFN-γ) was measured by ELISA. IL-10 and TGF-β downmodulate TNF-α and IL-17 production, whereas IL-27 had no effect in the production of TNF-α, IFN-γ and IL-17 in these patients. Neutralization of TNF-α decreased IFN-γ level and the neutralization of IFN-γ decreased TNF-α level and increased IL-10 production. This study demonstrate that IL-10 and TGF-β are cytokines that appear to be more involved in modulation of immune response in CL and ML patients. IL-10 might have a protective role, since the neutralization of IFN-γ decreases the production of TNF-α in an IL-10-dependent manner.  相似文献   

5.
Lipopolysaccharide (LPS) is the major structural component of Gram-negative bacteria cell wall and a highly pro-inflammatory toxin. Naringenin is found in Citrus fruits and exhibits antioxidant and anti-inflammatory properties through inhibition of NF-κB activation but its effects in LPS-induced inflammatory pain and leukocyte recruitment were not investigated yet. We investigated the effects of naringenin in mechanical hyperalgesia, thermal hyperalgesia and leukocyte recruitment induced by intraplantar injection of LPS in mice. We found that naringenin reduced hyperalgesia to mechanical and thermal stimuli, myeloperoxidase (MPO, a neutrophil and macrophage marker) and N-acetyl-β-D-glucosaminidase (NAG, a macrophage marker) activities, oxidative stress and cytokine (TNF-α, IL-1β, IL-6, and IL-12) production in the paw skin. In the peritoneal cavity, naringenin reduced neutrophil and mononuclear cell recruitment, and abrogated MPO and NAG activity, cytokine and superoxide anion production, and lipid peroxidation. In vitro, pre-treatment with naringenin inhibited superoxide anion and cytokine (TNF-α, IL-1β, IL-6, and IL-12) production by LPS-stimulated RAW 264.7 macrophages. Finally, we demonstrated that naringenin inhibited NF-κB activation in vitro and in vivo. Therefore, naringenin is a promising compound to treat LPS-induced inflammatory pain and leukocyte recruitment.  相似文献   

6.
目的 采用高通量测序技术分析乳腺炎小鼠肠道菌群的丰度特征与组织炎性因子的关系。方法 选用24只泌乳10 d的昆明雌鼠,随机分成4组(每组6只):健康对照组、低剂量攻菌组(含金黄色葡萄球菌103 CFU/25 μL)、中剂量攻菌组(含金黄色葡萄球菌104 CFU/25 μL)和高剂量攻菌组(含金黄色葡萄球菌105 CFU/25 μL)。用非损伤方法经乳头管分别注入不同浓度的金黄色葡萄球菌悬浊液于小鼠的第4对(腹部)乳腺内。观察小鼠、组织病理学变化以及乳腺组织中TNF-α和Cav-1含量变化;收集小鼠粪便,采用高通量测序技术对小鼠粪便菌群进行分析。结果 (1)与健康对照组小鼠相比,高剂量攻菌组乳腺组织呈明显的炎性病理变化,TNF-α表达明显升高(P<0.05),Cav-1表达明显降低(P<0.05);(2)不同组小鼠肠道菌群物种丰度不同,对照组肠道菌群以拟杆菌门和厚壁菌门为主;与对照组相比,高剂量攻菌组乳腺炎模型小鼠厚壁菌门丰度增高,拟杆菌门、疣微菌门丰度降低,变形菌门无显著差异;进一步比较后发现,从属以上水平看,后者拟杆菌属、另枝菌属、普雷沃菌属丰度相对较低。结论 提示乳腺炎发生和进展与肠道菌群的平衡有密切的关系,结果为研究乳腺炎的免疫学、病理学提供实验依据。  相似文献   

7.
The effect of 10-hydroxy-trans-2-decenoic acid (10H2DA), a major fatty acid component of royal jelly, was investigated on LPS-induced cytokine production in murine macrophage cell line, RAW264 cells. 10H2DA inhibited LPS-induced IL-6 production dose-dependently, but did not inhibit TNF-α production. 10H2DA inhibited LPS-induced NF-κB activation in a dose-dependent fashion. In addition, NF-κB activation induced by over-expression of either MyD88 or Toll/IL-1?receptor domain-containing adaptor inducing IFN-β (TRIF) was also inhibited by 10H2DA. Degradation of IκB-α and phosphorylation of IκB kinase-α were not inhibited by 10H2DA. On the other hand, reduction of LPS-induced IκB-ζ expression was discovered. Production of lipocalin-2 and granulocyte colony-stimulating factor (G-CSF), which is dependent on IκB-ζ, was also inhibited by 10H2DA, whereas that of IκB-ζ-independent cytokines/chemokines, such as IFN-β, murine monocyte chemotactic protein-1 (JE), macrophage inflammatory protein (MIP)-1α and MIP-2, was not. Together, 10H2DA specifically inhibited LPS-induced IκB-ζ expression, followed by inhibition of IκB-ζ-dependent gene production. These results suggest that 10H2DA is one of the components of royal jelly to show anti-inflammatory effects and could be a therapeutic drug candidate for inflammatory and autoimmune diseases associated with IκB-ζ and IL-6 production.  相似文献   

8.
Miao J  Fa Y  Gu B  Zhu W  Zou S 《Cytokine》2012,59(1):35-40
The intent of this study was to evaluate the active defense reaction of mouse mammary epithelial cells and the cytoprotective and anti-inflammatory properties of taurine to lipopolysaccharide (LPS)-induced disfunction in mouse mammary epithelial cells. (1) Primary cultured mouse mammary epithelial cells were stimulated with LPS for 24 h (final concentration=0, 5, 10, 20 μg/mL). Western blotting demonstrated a significant decrease in the secretion of β-casein in the 20 μg/mL LPS treatment group (P<0.05), while nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), lactoferrin (LF) and N-acetyl-β-D-glucosaminidase (NAGase) were all significantly increased following LPS treatment (P<0.01). Furthermore, cell survival was significantly inhibited after treatment with 20 μg/mL LPS; however, neither 5 μg/mL nor 10 μg/mL LPS had any effect on cell survival. Therefore, a level of 10 μg/mL LPS was selected to test the protective effect of taurine on mouse mammary epithelial cells. (2) Primary cultured mouse mammary epithelial cells were treated with 0, 5, 15 or 45 mmol/L taurine for 3 h, followed by 10 μg/mL LPS for 24 h. Taurine significantly attenuated the LPS-induced increase in NAGase activity, NO concentrations and the level of TNF-α, IL-1β, IL-6 and LF. Taurine at 45 mmol/L markedly increased β-casein secretion in response to LPS-induced disfunction. This study demonstrated that the addition of taurine to a culture medium significantly inhibited the LPS-induced release of inflammatory factors and increased β-casein secretion from mammary epithelial cells, thereby providing a possible explanation for the protective effect proposed for taurine in the prevention of LPS-induced disfunction in mammary epithelial cells.  相似文献   

9.
The present study is supported by our previous findings suggesting that calcium fructoborate (CF) has anti-inflammatory and antioxidant properties. Thus, we investigated the effects of CF on a model for studying inflammatory disorders in vitro represented by lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7 cells. This investigation was performed by analyzing the levels of some mediators released during the inflammatory process: cytokines such as tumor necrosis factor-α (TNF-α), interleukins IL-1β and IL-6 as well as cyclooxygenase-2 (COX-2), the main enzyme responsible for endotoxin/LPS-induced prostaglandin synthesis by macrophages. We also measured production of nitric oxide (NO) that plays an important role in the cytotoxicity activity of macrophages towards microbial pathogens. After CF treatment of LPS-stimulated macrophages we found an up-regulation of TNF-α protein level in culture medium, no significant changes in the level of COX-2 protein expression and a decrease in NO production as well as in IL-1β and IL-6 release. Collectively, this series of experiments indicate that CF affect macrophage production of inflammatory mediators. However, further research is required in order to establish whether CF treatment can be beneficial in suppression of pro-inflammatory cytokine production and against progression of endotoxin-related diseases.  相似文献   

10.
Mastitis causes great psychological and physical pain among women. Our previous studies found that niacin has anti-inflammatory effect, and the realization of this function depends on GPR109A. However, there are no previous reports about the anti-inflammatory function of GPR109A in mastitis. In our study, we observed the effect of niacin on the WT and GPR109A-/- mice mastitis model. The results showed that administration of niacin to WT mice reduced the damage, proinflammatory mediators and protected the integrity of the blood milk barrier in mammary gland. While in GPR109A-/- mice, there was no effect on the above indexes. In mammary epithelial cells, GPR109A was able to promote autophagy and Nrf2 nuclear import through AMPK. In LPS-induced mammary epithelial cells, niacin inhibited the LPS-induced inflammatory response and downregulation of tight junction proteins, and these effects were eliminated by knocking down GPR109A, blocking autophagy or inhibiting Nrf2 nuclear import. These results indicate that in mastitis, GPR109A promotes autophagy and Nrf2 nuclear import through AMPK, thereby inhibiting inflammatory damage to the mammary gland and repairing the blood milk barrier. Our results suggested that GPR109A may be a potential target for the treatment of mastitis.  相似文献   

11.
It is estimated that 1 billion people around the world are vitamin D deficient. Vitamin D deficiency has been linked to various inflammatory diseases. However, the mechanism by which vitamin D reduces inflammation remains poorly understood. In this study, we investigated the inhibitory effects of physiologic levels of vitamin D on LPS-stimulated inflammatory response in human blood monocytes and explored potential mechanisms of vitamin D action. We observed that two forms of the vitamin D, 1,25(OH)(2)D(3), and 25(OH)D(3), dose dependently inhibited LPS-induced p38 phosphorylation at physiologic concentrations, IL-6 and TNF-α production by human monocytes. Upon vitamin D treatment, the expression of MAPK phosphatase-1 (MKP-1) was significantly upregulated in human monocytes and murine bone marrow-derived macrophages (BMM). Increased binding of the vitamin D receptor and increased histone H4 acetylation at the identified vitamin D response element of the murine and human MKP-1 promoters were demonstrated. Moreover, in BMM from MKP1(-/-) mice, the inhibition of LPS-induced p38 phosphorylation by vitamin D was completely abolished. Vitamin D inhibition of LPS-induced IL-6 and TNF-α production by BMM from MKP-1(-/-) mice was significantly reduced as compared with wild-type mice. In conclusion, this study identified the upregulation of MKP-1 by vitamin D as a novel pathway by which vitamin D inhibits LPS-induced p38 activation and cytokine production in monocytes/macrophages.  相似文献   

12.
Microglia are the innate immune cells in the nervous system. In the resting state, they display a ramified morphology, while upon disease stimulation their processes would be retracted, along with pro-inflammatory cytokine overproduction. Reversing microglial process retraction may help reduce pro-inflammatory cytokine production and restore microglia's ability to scan surrounding environments, rendering brain function regulation to be more effective. We found that diallyl disulfide (DADS), a major organosulfur compound in garlic oil, administered at different doses and time points, promoted microglial process elongation in both cultured systems and prefrontal cortexes in mice in a reversible manner. Lipopolysaccharide (LPS), a classical activator of microglia, did not affect this pro-elongation effect of DADS at conditions in vitro and in vivo. Functional studies revealed that DADS pre-treatment attenuated LPS-induced decreases in levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) mRNA as well as LPS-induced increases in levels of IL-10 and CD206 mRNA in both cultured microglia and prefrontal cortexes in mice. Protein kinase B (Akt) inhibition attenuated the pro-elongation effect of DADS on microglial process and blocked the regulatory effects of DADS on LPS-induced inflammatory responses in both cultured microglia and prefrontal cortexes in mice. In an in vivo model of neuroinflammation, DADS pre-treatment prevented LPS-induced retraction of microglial process in the prefrontal cortex in mice and attenuated LPS-induced increase in immobility time in the tail suspension test and forced swim test. These results indicate that DADS induces an Akt-dependent elongation of microglia process, along with the induction of an anti-inflammatory phenotype.  相似文献   

13.
Genipin, an aglycon of geniposide, has been reported to have anti-inflammatory effect. However, the anti-inflammatory activity of genipin on LPS-stimulated BV2 microglial cells has not been reported. In this study, we investigated the molecular mechanisms responsible for the anti-inflammatory activity of genipin both in vivo and in vitro. The levels of TNF-α, IL-1β, NO and PGE2 were detected by ELISA. The expression of Nrf2, HO-1, and NF-κB were detected by western blot analysis. In vivo, genipin significantly attenuated LPS-induced memory deficit in the Morris water maze and passive avoidance tasks. Genipin also inhibited LPS-induced TNF-α and IL-1β expression in brain tissues. In vitro, our results showed that genipin inhibited LPS-induced TNF-α, IL-1β, NO and PGE2 production in a concentration-dependent manner. Genipin also suppressed LPS-induced NF-κB activation. In addition, the expression of Nrf2 and HO-1 were up-regulated by treatment of genipin. Furthermore, the inhibition of genipin on inflammatory mediator production was attenuated by transfection with Nrf2 siRNA. In conclusion, genipin inhibited LPS-induced inflammatory response by activating Nrf2 signaling pathway in BV2 microglia.  相似文献   

14.
15.
The outcome of pathological process during sepsis caused by Gram-negative bacteria depends on the reaction of human blood cells to bacterial structural components, lipopolysaccharides (LPS). A general inflammatory response develops due to the increased production of proinflammatory cytokines. One of the current methods of prevention of inflammatory response is the inhibition of LPS binding to cellular receptors. We have studied the efficacy of antagonistic properties of LPS from Rhodobacter capsulatus on the production of TNF-α, IL-6, and IL-1β cytokines induced by toxic LPS from Salmonella typhimurium and Escherichia coli in human whole blood. LPS from R. capsulatus in concentrations of 0.1 and 1 μg/mL did not induce synthesis of TNF-α, IL-6, or IL-1β. Measurements of cytokine levels showed that LPS from R. capsulatus exerted a clear protective effect against toxic LPS. In particular, LPS from R. capsulatus fullly inhibited the production of TNF-α and IL-1β and significantly decreased the IL-6 production induced by LPS from S. typhimurium. Additionally, LPS from R. capsulatus antagonized the effects of LPS from E. coli, fully inhibiting the TNF-α production and decreasing the IL-6 and IL-1β levels by 60% and 70%, respectively. Thus, LPS from R. capsulatus acts as a potent antagonist of cell activation induced by toxic LPS.  相似文献   

16.
Acute lung injury (ALI) and its more serious form, respiratory distress syndrome (ARDS), are considered as an acute and severe inflammatory process existing in lungs, and still remain high mortality rates. Tripartite motif 8 (TRIM8) contains an N-terminal RING finger, which is followed by two B-boxes and a coiled-coil domain, belonging to the TRIM/RBCC family and playing significant role in meditating inflammation, oxidative stress and apoptosis. In the study, we investigated the role of TRIM8 in ALI induced by lipopolysaccharide (LPS) and the underlying molecular mechanisms. The in vitro results indicated that LPS time-dependently enhanced TRIM8 expression in lung epithelial cells. Suppressing TRIM8 markedly ameliorated LPS-elicited inflammatory response, as evidenced by the down-regulated mRNA levels of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) in cells mainly through inactivating nuclear factor-kappa B (NF-κB) signaling pathway; however, over-expressing TRIM8 markedly promoted inflammation in LPS-challenged cells. In addition, LPS-induced oxidative stress was accelerated by TRIM8 over-expression, while being alleviated by TRIM8 knockdown by regulating Nrf2 signaling. Importantly, TRIM8 could negatively meditate AMP-activated protein kinase-α (AMPKα) activation to modulate LPS-triggered inflammatory response and ROS generation in vitro. Additionally, our in vivo findings suggested that TRIM8 knockdown effectively attenuated LPS-induced lung injury nu decrease of lung wet/dry (W/T) ratio, protein concentrations, neutrophil infiltration, myeloperoxidase (MPO) activity, reactive oxygen species (ROS) production and superoxide dismutase (SOD) depletion. Meanwhile, the loss of TRIM8 markedly lessened IL-1β, IL-6 and TNF-α expression in lung tissues of LPS-challenged mice, and reduced NF-κB phosphorylation. Furthermore, TRIM8 knockdown evidently improved nuclear factor-erythroid 2 related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions in lung of LPS-treated mice. The anti-inflammation and anti-oxidant role of TRIM8-silence might be associated with AMPKα phosphorylation. Together, our study firstly provided a support that TRIM8 knockdown effectively protected LPS-induced ALI against inflammation and oxidative stress largely dependent on the promotion of AMPKα pathway.  相似文献   

17.
小胶质细胞在脂多糖引起的热高敏中的作用   总被引:1,自引:0,他引:1  
目的探讨小胶质细胞在脂多糖引起的热高敏中的作用。方法清洁级雄性昆明小鼠,随机分成两组,每组5只,腹腔注射LPS组和注射PBS组,在注射前及后30、60、120、240 min测量小鼠足底的热痛阈;每组于注射前及后4h各处死5只取脑组织检测IL-1β、TNF-α;每组于腹腔注射4h时处死动物,免疫荧光确定脑组织中小胶质细胞的激活情况。然后分为四组,米诺环素+PBS组,米诺环素+LPS组,PBS+PBS组,PBS+LPS组,每组5只,连续三天腹腔注射米诺环素或PBS,第三天注射LPS或PBS,在注射前及后30、60、120、240 min测量小鼠足底的热痛阈;每组于注射前及后4h各处死5只取脑组织检测IL-1β、TNF-α。结果与注射PBS相比,注射LPS导致IL-1β、TNF-α分泌增加,注射60、120、240 min小鼠的热痛阈降低;与米诺环素+PBS组、米诺环素+LPS组、PBS+PBS组相比,PBS+LPS组导致IL-1β、TNF-α分泌增加,注射60、120、240 min小鼠的热痛阈降低。结论LPS激活小胶质细胞分泌促炎细胞因子导致热高敏。  相似文献   

18.
We previously demonstrated an immune-inflammatory response associated with increased expression of interleukin (IL)-β and fibronectin in graft coronary arteriopathy in piglets following heterotopic heart transplant. Further studies showed that increased endogenously produced IL-β was upregulating fibronectin production by donor coronary artery (CA) smooth muscle cells (SMC). Since co-induction of IL-β and tumor necrosis factor (TNF)-α has been shown in other systems, we investigated the possible interaction between these cytokines in regulating fibronectin production in CA SMC. First, we documented increased TNF-α expression in vivo in donor compared to host CA. Next, synthesis of fibronectin was measured in host and donor CA SMC following [35S]-methionine radiolabeling and gelatin-sepharose extraction. As previously shown with IL-β, increased donor CA SMC fibronectin synthesis was reduced to host levels in the presence of TNF-α antibodies, and exogenous TNF-α upregulated fibronectin synthesis in host CA SMC to levels in donor cells. In normal CA SMC, TNF-α-stimulated fibronectin production was downregulated to or below control levels in the presence of IL-β antibodies. Likewise, IL-β-stimulated fibronectin synthesis was downregulated to control levels when TNF-α neutralizing antibodies were added. Combining TNF-α and IL-β enhanced fibronectin production over that observed with either cytokine alone, but was not additive. Thus, our studies suggest that vascular SMC fibronectin synthesis is regulated by reciprocal induction of IL-β and TNF-α activity and provide the first demonstration of a ‘cytokine loop’ modulating matrix production. © 1995 Wiley-Liss, Inc.  相似文献   

19.
20.
Tumor necrosis factor-α (TNF-α) is a potent proinflammatory cytokine produced predominantly by activated macrophages, and plays a central role in the protective immunity against intracellular pathogens and the pathogenesis of autoimmune and inflammatory diseases. While both the soluble and transmembrane forms of TNF-α (sTNF-α and tmTNF-α) are biologically functional, the latter but not the former acts as a receptor besides as a ligand, and transmit a retrograde signal in a cell-to-cell contact manner. The production of TNF-α by macrophages under Th2-type (allergic) inflammatory conditions has been ill defined, compared to that under Th1-type inflammatory conditions. Here we examined the effect of representative Th2-inducing cytokines IL-4 and IL-33 on the TNF-α expression in macrophages. IL-4 induced the production of neither sTNF-α nor tmTNF-α while IL-33 promoted the production of sTNF-α with no detectable tmTNF-α. Notably, the combination of IL-4 and IL-33 elicited the tmTNF-α expression on macrophages, in addition to the enhanced production of sTNF-α and IL-6. The IL-4/IL-33-elicited tmTNF-α expression was not observed in IL-6-deficient macrophages, suggesting the involvement of macrophage-derived IL-6 in the tmTNF-α expression. Indeed, the stimulation of macrophages with the combination of IL-4 and IL-6 induced the tmTNF-α expression with no detectable production of sTNF-α. Thus, IL-4 and IL-33 synergistically elicit the tmTNF-α expression on macrophages through the autocrine action of IL-6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号