首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the effect and mechanism of microRNA-186-5p (miR-186-5p) on the apoptosis in high glucose (HG)–treated cardiomyocytes. Diabetic cardiomyopathy model was established in cardiomyocytes by stimulating with HG. The expressions of miR-186-5p and toll-like receptor 3 (TLR3) were detected by quantitative polymerase chain reaction or Western blot analysis, respectively. Apoptosis was detected in HG-treated cardiomyocytes by flow cytometry and Western blot analysis. The interaction between miR-186-5p and TLR3 was explored by bioinformatics analysis and luciferase activity assay. Results showed that miR-186-5p expression was downregulated in HG-treated cardiomyocytes and its overexpression reversed HG-induced apoptosis and cleaved caspase-3 protein expression. Moreover, TLR3 was indicated as a target of miR-186-5p and regulated by miR-186-5p. Knockdown of TLR3 suppressed HG-induced apoptosis and cleaved caspase-3 protein expression. Besides, restoration of TLR3 ablated the effect of miR-186-5p on cell apoptosis. Collectively, miR-186-5p attenuated HG-induced apoptosis by regulating TLR3 in cardiomyocytes, providing novel biomarker for treatment of diabetic cardiomyopathy.  相似文献   

2.
Diabetes is often accompanied by dysfunction of salivary glands. However, the molecular mechanism remains unclear. The mechanisms that underlie diabetic hyposalivation were studied by db/db mice and SMG-C6 cells. We found morphological changes and decreased stimulated salivary flow rates of the submandibular gland (SMG) in diabetic mice. We observed structural changes and dysfunction of mitochondria. More mitophagosomes and higher expression of autophagy-related proteins were detected. Increased levels of proteins PINK1 and Parkin indicate that PINK1/Parkin-mediated mitophagy was activated in diabetic SMG. Consistently, high glucose (HG) induced mitochondrial dysfunction and PINK1/Parkin-mediated mitophagy in cultivated SMG-C6 cells. HG also increased reactive oxygen species (ROS) and lessened activation of antioxidants in SMG-C6 cells. In addition, HG lowered ERK1/2 phosphorylation and HG-induced mitophagy was decreased after ERK1/2 was activated by LM22B-10. Altogether, these data suggest that ROS played a crucial role in diabetes-induced mitochondrial dysfunction and PINK1/Parkin-mediated mitophagy and ERK1/2 was required in HG-induced mitophagy in SMG.  相似文献   

3.
4.
The current study aims to evaluate whether peripheral blood miR-324-5p could be used to differentiate patients with metabolic disorders and healthy controls. Our data showed that miR-324-5p levels were elevated in the peripheral blood of patients with hyperglycemia or hyperlipidemia. In addition, the expression of miR-324-5p was enhanced in the peripheral blood and liver of db/db mice. Further study indicated that overexpression of miR-324-5p reduced the activation of the AKT/GSK pathway and increased lipid accumulation, while the inhibition of miR-324-5p activated the AKT/GSK pathway and decreased lipid accumulation. A dual luciferase assay revealed that Rho-associated coiled-coil containing protein kinase 1 (ROCK1) was a target gene of miR-324-5p. In addition, silencing ROCK1 deteriorated lipid and glucose metabolism. More importantly, knockdown of ROCK1 reversed the miR-324-5p inhibitor-induced improvement of glucose and lipid metabolism. In summary, miR-324-5p plays a regulatory role in glucose and lipid metabolism by targeting ROCK1, which is involved in metabolic disorders. The use of miR-324-5p in diagnosing metabolic syndrome is worth investigating and may benefit patients.  相似文献   

5.
Diabetic cardiomyopathy (DbCM) is responsible for increased morbidity and mortality in patients with diabetes and heart failure. However, the pathogenesis of DbCM has not yet been identified. Here, we investigated the important role of lncRNA-ZFAS1 in the pathological process of DbCM, which is associated with ferroptosis. Microarray data analysis of DbCM in patients or mouse models from GEO revealed the significance of ZFAS1 and the significant downregulation of miR-150-5p and CCND2. Briefly, DbCM was established in high glucose (HG)–treated cardiomyocytes and db/db mice to form in vitro and in vivo models. Ad-ZFAS1, Ad-sh-ZFAS1, mimic miR-150-5p, Ad-CCND2 and Ad-sh-CCND2 were intracoronarily administered to the mouse model or transfected into HG-treated cardiomyocytes to determine whether ZFAS1 regulates miR-150-5p and CCND2 in ferroptosis. The effect of ZFAS1 on the left ventricular myocardial tissues of db/db mice and HG-treated cardiomyocytes, ferroptosis and apoptosis was determined by Masson staining, immunohistochemical staining, Western blotting, monobromobimane staining, immunofluorescence staining and JC-1 staining. The relationships among ZFAS1, miR-150-5p and CCND2 were evaluated using dual-luciferase reporter assays and RNA pull-down assays. Inhibition of ZFAS1 led to reduced collagen deposition, decreased cardiomyocyte apoptosis and ferroptosis, and attenuated DbCM progression. ZFAS1 sponges miR-150-5p to downregulate CCND2 expression. Ad-sh-ZFAS1, miR-150-5p mimic, and Ad-CCND2 transfection attenuated ferroptosis and DbCM development both in vitro and in vivo. However, transfection with Ad-ZFAS1 could reverse the positive effects of miR-150-5p mimic and Ad-CCND2 in vitro and in vivo. lncRNA-ZFAS1 acted as a ceRNA to sponge miR-150-5p and downregulate CCND2 to promote cardiomyocyte ferroptosis and DbCM development. Thus, ZFAS1 inhibition could be a promising therapeutic target for the treatment and prevention of DbCM.  相似文献   

6.
Laryngocarcinoma is the most common head and neck cancer and has a high incidence and mortality, causing about 83 000 deaths per year worldwide. Our research aimed to investigate the possible role of long noncoding RNA (lncRNA) taurine upregulated gene 1 (TUG1) in laryngocarcinoma development. The messenger RNA (mRNA) levels of TUG1 in tumor tissues and control (plasma) samples of laryngocarcinoma patients as well as in laryngocarcinoma cells were detected. The influences of TUG1 suppression on cell biological processes (viability, apoptosis, migration, and invasion) and cytoskeleton rearrangement in laryngocarcinoma cells were tested. Moreover, we investigated the regulatory interaction between TUG1 and miR-145-5p, and identified the target gene of miR-145-5p. The association between TUG1 and the protein expressions of RhoA/rho associated coiled-coil containing protein kinase (ROCK)/matrix metalloproteinases (MMPs) pathway-associated factors were detected. TUG1 was found to be highly expressed in tumor tissues and plasma samples of laryngocarcinoma patients as well as in laryngocarcinoma cells. Suppression of TUG1 decreased laryngocarcinoma cell viability, increased apoptosis, and suppression migration, invasion, and cytoskeleton rearrangement. Moreover, TUG1 negatively regulated miR-145-5p. TUG1 regulated tumor growth (viability and apoptosis) and metastasis through miR-145-5p. Furthermore, ROCK1 was targeted by miR-145-5p, and miR-145-5p/ROCK1 partner was involved in the process of tumor growth and metastasis. Finally, we found that TUG1 functioned on laryngocarcinoma by activating RhoA/ROCK/MMPs pathway. Our study reveals that lncRNA TUG1 is upregulated in laryngocarcinoma and may be involved in the process of laryngocarcinoma through miR-145-5p downregulation and activating the RhoA/ROCK/MMPs signals.  相似文献   

7.
Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a common orthopaedic disease. GIONFH primarily manifests clinically as hip pain in the early stages, followed by the collapse of the femoral head, narrowing of the hip joint space and damage to the acetabulum, resulting in severely impaired mobility. However, the pathogenesis of GIONFH is not clearly understood. Recently, biomechanical forces and non-coding RNAs have been suggested to play important roles in the pathogenesis of GIONFH. This study aimed to evaluate the role of biomechanical forced and non-coding RNAs in GIONFH. We utilized an in vivo, rat model of GIONFH and used MRI, μCT, GIONFH-TST (tail suspension test), GIONFH-treadmill, haematoxylin and eosin staining, qRT-PCR and Western blot analysis to analyse the roles of biomechanical forces and non-coding RNAs in GIONFH. We used RAW264.7 cells and MC3T3E1 cells to verify the role of MALAT1/miR-329-5p/PRIP signalling using a dual luciferase reporter assay, qRT-PCR and Western blot analysis. The results demonstrated that MALAT1 and PRIP were up-regulated in the femoral head tissues of GIONFH rats, RAW264.7 cells, and MC3T3E1 cells exposed to dexamethasone (Dex). Knockdown of MALAT1 decreased PRIP expression in rats and cultured cells and rescued glucocorticoid-induced osteonecrosis of femoral head in rats. The dual luciferase reporter gene assay revealed a targeting relationship for MALAT1/miR-329-5p and miR-329-5p/PRIP in MC3T3E1 and RAW264.7 cells. In conclusion, MALAT1 played a vital role in the pathogenesis of GIONFH by binding to (‘sponging’) miR-329-5p to up-regulate PRIP. Also, biomechanical forces aggravated the pathogenesis of GIONFH through MALAT1/miR-329-5p/PRIP signalling.  相似文献   

8.
Objective: Diabetic cardiomyopathy (DCM) is one of the complications experienced by patients with diabetes. In recent years, long noncoding RNAs (lncRNAs) have been investigated because of their role in the progression of various diseases, including DCM. The purpose of the present study was to explore the role of lncRNA GAS5 in high glucose (HG)-induced cardiomyocyte injury and apoptosis.Materials and methods: We constructed HG-induced AC16 cardiomyocytes and a streptozotocin (STZ)-induced rat diabetes model. GAS5 was overexpressed and knocked out at the cellular level, and GAS5 was knocked down by lentiviruses at the animal level to observe its effect on myocardial injury. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of GAS5. Cell proliferation and apoptosis after GAS5 knockout were detected by CCK-8, TUNEL, and flow cytometry assays. ELISA was used to detect the changes in myocardial enzyme content in cells and animal myocardial tissues during the action of GAS5 on myocardial injury.Results: GAS5 expression was up-regulated in HG-treated AC16 cardiomyocytes and the rat diabetic myocardial injury model. The down-regulation of GAS5 could inhibit HG-induced myocardial damage. This work proved that the down-regulation of GAS5 could reverse cardiomyocyte injury and apoptosis by targeting miR-138 to down-regulate CYP11B2.Conclusion: We confirmed for the first time that the down-regulation of GAS5 could reverse CYP11B2 via the miR-138 axis to reverse HG-induced cardiomyocyte injury. This research might provide a new direction for explaining the developmental mechanism of DCM and potential targets for the treatment of myocardial injury.  相似文献   

9.
10.
11.
Diabetic cardiomyopathy (DCM) is characterized by myocardial hypertrophy and fibrosis. This study aimed to investigate the effects of microRNA (miR)-34a on myocardial fibrosis in DCM and its potential mechanism of targeting Pin-1 signaling. Vimentin and Pin-1 proteins in mouse cardiac tissues were detected by immunohistochemical staining. Locked nucleic acid in situ hybridization was used to measure miR-34a expression in cardiac tissues. Primary mouse cardiac fibroblasts (CFs) were transfected with a mimics control/miR-34a mimics or Pin-1 plasmid and cultured in high-glucose (HG) Dulbecco's modified Eagle's medium. The miR-34a levels were measured by quantitative polymerase chain reaction. The apoptosis and viability of transfected cells were detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling and Cell Counting Kit-8 assays respectively. A cell migration experiment and dual-luciferase reporter assay were also performed. The body weight and fasting blood glucose of DCM mice were significantly higher than those in the control (CTL) group. In addition, DCM mice had decreased serum insulin levels and impaired cardiac function. The number of CFs in the DCM group was higher than in the CTL group and Pin-1 expression was upregulated. The expression level of miR-34a in the cardiac tissue of mice in the DCM group was obviously downregulated compared with the CTL group. The HG stimulation of CFs for 48 h significantly downregulated the expression level of miR-34a and was associated with increased Type I collagen expression, cell viability, and migration and decreased apoptosis. However, these effects could be reversed by overexpressing miR-34a in HG-induced CFs. Furthermore, we found that Pin-1 was a direct target of miR-34a. Our results suggest that miR-34a can attenuate myocardial fibrosis in DCM by reducing Type I collagen production, cell viability, and migration and increasing the apoptosis of CFs by targeting Pin-1 signaling.  相似文献   

12.
As there is increasing evidence that Rho-Rho kinase (ROCK) pathway plays an important role in the proliferation and contraction in many tissues, we investigated the contractile role of a ROCK inhibitor, fasudil, and the distribution of RhoA, RhoB, RhoC, ROCK1, and ROCK2 in the rat prostate. Twelve-week-old Sprague-Dawley rat prostate was used in this study. Rat prostatic contractile responses induced by carbachol and norepinephrine were investigated in organ bath studies without or with 10(-7), 10(-6), and 10(-5) M of a non-selective ROCK inhibitor, fasudil. Immunoblot analysis and immunohistochemical staining were performed to investigate the participation levels of RhoA, RhoB, RhoC, ROCK1, and ROCK2. The E(max) values induced by carbachol and norepinephrine were similar in the rat prostate. Fasudil significantly inhibited carbachol- or norepinephrine-induced prostatic contractions in a dose-dependent manner. Fasudil 10(-5) M reduced the initial prostatic contraction (without fasudil) to 56.7 ± 5.9% for carbachol and to 45.7 ± 12.3% for norepinephrine. Amounts of RhoA, RhoB, RhoC, ROCK1, and ROCK2 were detected by immunoblot analysis in the prostate. Immunohistochemical study revealed that RhoA, RhoB, RhoC, ROCK1, and ROCK2 were all positive in the prostatic smooth muscle, while there were some differences of distributions of Immunoreactivities between these enzymes in the prostatic glandula. Our data indicated that rat prostate contains RhoA, RhoB, RhoC, ROCK1, and ROCK2, which play an important role in the autonomic nerve-mediated contractile responses in the prostate.  相似文献   

13.

Background

Endothelial dysfunction is an early sign of diabetic cardiovascular disease and may contribute to progressive diabetic nephropathy (DN). There is increasing evidence that dysfunction of the endothelial tight junction is a crucial step in the development of endothelial hyperpermeability, but it is unknown whether this occurs in glomerular endothelial cells (GEnCs) during the progression of DN. We examined tight junction dysfunction of GEnCs during early-stage DN and the potential underlying mechanisms. We also examined the effect of simvastatin (3-Hydroxy-3-methylglutaryl CoA reductase inhibitor) on dysfunction of the tight junctions of cultured GEnCs and in db/db mice with early-stage DN.

Methods

We assessed the expression of occludin and ZO-1, two major components of the tight junction complex, in cultured rat GEnCs treated with high glucose and in 12 week-old db/db mice with early-stage DN. We also investigated activation of RhoA/ROCK1 signaling, GEnC permeability, and renal function of the mice.

Results

High glucose suppresses occludin expression and disrupts occludin/ZO-1 translocation in GEnCs. These changes were associated with increased permeability to albumin and activation of RhoA/ROCK1 signaling. Occludin and ZO-1 dysregulation also occurred in the glomeruli of mice with early-stage DN, and these abnormalities were accompanied by albuminuria and activation of RhoA/ROCK1 in isolated glomeruli. Simvastatin prevented high glucose or hyperglycemia-induced dysregulation of occludin and ZO-1 by inhibition of RhoA/ROCK1 signaling in cultured GEnCs and in db/db mice with early-stage DN.

Conclusion

Our results indicate that activation of RhoA/ROCK1 by high glucose disrupts the expression and translocation of occludin/ZO-1 and that simvastatin alleviates occludin/ZO-1 dysregulation and albuminuria by suppressing RhoA/ROCK1 signaling during early-stage DN. These results suggest a potential therapeutic strategy for preventing the onset of albuminuria in early-stage DN.  相似文献   

14.
Glomerular endothelial cell injury plays an important role in the development and progression of diabetic nephropathy (DN). The expression and function of klotho in glomerular endothelial cells remain unclear. Thus, this study aimed to investigate the expression and the functional role of klotho in DN progression in mice and in high glucose (HG)-induced cell injury of human renal glomerular endothelial cells (HRGECs) and the underlying mechanism. In this study, HRGECs were cultured with media containing HG to induce endothelial cell injury and db/db mice were used as DN model mice. Klotho was overexpressed or knocked down in HRECs to evaluate its role in HG-induced HRGECs injury. klotho-overexpressing adenovirus (rAAV-klotho) was injected into db/db mice via the tail vein to further validate the protective effect of klotho in DN. Decreased klotho expression was observed in DN patients, DN mice, and HG-exposed HRGECs. Furthermore, klotho overexpression significantly abolished the HG-induced HRGECs injury and activation of Wnt/β-catenin pathway and RAAS. In contrast, klotho knockdown exerted the opposite effects. Moreover, klotho attenuated diabetic nephropathy in db/db mice, which was also associated with inhibition of the Wnt/β-catenin pathway and RAAS. In conclusion, klotho attenuates DN in db/db mice and ameliorates HG-induced injury of HRGECs.  相似文献   

15.
The Rho-kinase (ROCK) plays an important role in the pathogenesis of heart injury. Recent cellular and molecular biology studies indicated a pivotal role of the RhoA/ROCK cascade in many aspects of cardiovascular function such as heart failure, cardiac hypertrophy, and ventricular remodeling following myocardial infarction. However, the signal transduction of RhoA/ROCK and its down-stream signaling pathways remains elusive, and the mechanism of ROCK-mediated isoproterenol (ISO)-induced heart failure is still not thoroughly understood. In the present study, we investigated the effect of the ROCK inhibitor, fasudil hydrochloride hydrate, on ISO-induced heart failure and the potential relationship of RhoA/ROCK to the extracellular signal-regulated kinases (ERK) and the c-jun NH 2-terminal kinase (JNK) pathways. Male Sprague-Dawley (SD) rats, maintained on a normal diet, were randomly divided into four groups given control, ISO alone, ISO with low-dose fasudil, or ISO with high-dose fasudil treatments. Fasudil effectively inhibited ISO-induced heart failure, as evaluated by biometric, hemodynamic, and histological examinations. Consistently, ISO-induced ROCK-1 mRNA expression and myosin phosphatase target subunit-1 (MYPT-1) phosphorylation were markedly suppressed by fasudil. In addition, fasudil significantly decreased ISO-induced JNK activation, ERK translocation to the nucleus and subsequent c-fos, c-jun expression and upregulated c-FLIP(L) expression. Taken together, these results indicate that the RhoA/ROCK pathway is essential for ISO induced heart failure, which can be effectively suppressed by fasudil.  相似文献   

16.
糖尿病心肌病(diabetic cardiomyopathy, DCM)是指发生于糖尿病患者,不能用冠心病、高血压性心脏病及其他心脏病变来解释的心肌疾病。目前,DCM的病因和发病机制尚未完全阐明,且缺乏特异性治疗手段。中药管花肉苁蓉提取物松果菊苷(echinacoside, ECH)对心肌细胞具有保护作用。以db/m小鼠为正常对照组(db/m组),db/db小鼠分为模型组(db/db组)和ECH干预组(db/db+ECH组),探讨了ECH对糖尿病db/db小鼠心肌的影响及机制。db/db+ECH组小鼠给予松果菊苷灌胃,db/m组和db/db组小鼠给予0.9%氯化钠溶液灌胃。心脏超声观察心脏功能,Masson染色观察组织胶原纤维含量,逆转录聚合酶链式反应检测Ⅰ型胶原和Ⅲ型胶原mRNA的表达,蛋白质免疫印迹技术检测转化生长因子-β1(transforming growth factor-β1, TGF-β1)、phospho-Smad2(p-Smad2)和phospho-Smad3(p-Smad3)的表达。结果显示,ECH能够改善db/db小鼠左心室肥大和心脏功能,降低胶原沉积(P<...  相似文献   

17.
18.
Diabetic retinopathy (DR) remains the leading cause of blindness in adults with diabetes mellitus. Numerous microRNAs (miRNAs) have been identified to modulate the pathogenesis of DR. The main purpose of this study was to evaluate the potential roles of miR-455-5p in high glucose (HG)-treated retinal pigment epithelial (RPE) cells and underlying mechanisms. Our present investigation discovered that the expression of miR-455-5p was apparently downregulated in ARPE-19 cells stimulated with HG. In addition, forced expression of miR-455-5p markedly enhanced cell viability and restrained HG-induced apoptosis accompanied by decreased BCL2-associated X protein (Bax)/B-cell leukemia/lymphoma 2 (Bcl-2) ratio and expression of apoptotic marker cleaved caspase-3 during HG challenged. Subsequently, augmentation of miR-455-5p remarkably alleviated HG-triggered oxidative stress injury as reflected by decreased the production of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) content as well as NADPH oxidase 4 expression, concomitant with enhanced the activities of superoxide dismutase, catalase, and GPX stimulated with HG. Furthermore, enforced expression of miR-455-5p effectively ameliorated HG-stimulated inflammatory response as exemplified by repressing the secretion of inflammatory cytokines interleukin 1β (IL-1β), IL-6, and tumour necrosis factor-α in ARPE-19 cells challenged by HG. Most importantly, we successfully identified suppressor of cytokine signaling 3 (SOCS3) as a direct target gene of miR-455-5p, and miR-455-5p negatively regulated the expression of SOCS3. Mechanistically, restoration of SOCS3 abrogated the beneficial effects of miR-455-5p on apoptosis, accumulation of ROS, and inflammatory factors production in response to HG. Taken together, these findings demonstrated that miR-455-5p relieved HG-induced damage through repressing apoptosis, oxidant stress, and inflammatory response by targeting SOCS3. The study gives evidence that miR-455-5p may serve as a new potential therapeutic agent for DR treatment.  相似文献   

19.
Aberrant regulation in mesangial cell proliferation, extracellular matrix (ECM) accumulation, oxidative stress, and inflammation under hyperglycemic condition contributes significantly to the occurrence and development of diabetic nephropathy (DN). However, the mechanisms underlying the hyperglycemia-induced dysregulations have not been clearly elucidated. Here, we reported that high mobility group box 1 (HMGB1) was highly elevated in high glucose (HG)-treated mesangial cells, and induced the phosphorylation, nuclear translocation, and DNA binding activity of NF-κB via toll-like receptor 4 (TLR4). Function assays showed that inhibition of HMGB1 mitigated HG-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells via TLR4/NF-κB pathway. Increasing evidence has shown that circRNA, a large class of noncoding RNAs, functions by binding with miRNAs and terminating regulation of their target genes. We further investigated whether HMGB1 is involved in circRNA–miRNA–mRNA regulatory network. First, HMGB1 was identified and confirmed to be the target of miR-205, and miR-205 played a protective role against HG-induced cell injure via targeting HMGB1. Then circLRP6 was found to be upregulated in HG-treated mesangial cells, and regulate HG-induced mesangial cell injure via sponging miR-205. Besides, overexpression of miR-205 or knockdown of circLRP6 inhibited the NF-κB signaling pathway. Collectively, these data suggest that circLRP6 regulates HG-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells via sponging miR-205, upregulating HMGB1 and activating TLR4/NF-κB pathway. These findings provide a better understanding for the pathogenesis of DN.  相似文献   

20.
Accumulative indoxyl sulfate (IS) retained in chronic kidney disease (CKD) can potentiate vascular endothelial dysfunction, and herein, we aim at elucidating the underlying mechanisms from the perspective of possible association between reactive oxygen species (ROS) and RhoA/ROCK pathway. IS-treated nephrectomized rats are administered with antioxidants including NADPH oxidase inhibitor apocynin, SOD analog tempol, and mitochondrion-targeted SOD mimetic mito-TEMPO to scavenge ROS, or ROCK inhibitor fasudil to obstruct RhoA/ROCK pathway. First, we find in response to IS stimulation, antioxidants treatments suppress increased aortic ROCK activity and expression levels. Additionally, ROCK blockade prevent IS-induced increased NADPH oxidase expression (mainly p22phox and p47phox), mitochondrial and intracellular ROS (superoxide and hydrogen peroxide) generation, and decreased Cu/Zn-SOD expression in thoracic aortas. Apocynin, mito-TEMPO, and tempol also reverse these markers of oxidative stress. These results suggest that IS induces excessive ROS production and ROCK activation involving a circuitous relationship in which ROS activate ROCK and ROCK promotes ROS overproduction. Finally, ROS and ROCK depletion attenuate IS-induced decrease in nitric oxide (NO) production and eNOS expression levels, and alleviate impaired vasomotor responses including increased vasocontraction to phenylephrine and decreased vasorelaxation to acetylcholine, thereby preventing cardiovascular complications accompanied by CKD. Taken together, excessive ROS derived from NADPH oxidase and mitochondria coordinate with RhoA/ROCK activation in a form of positive reciprocal relationship to induce endothelial dysfunction through disturbing endothelium-dependent NO signaling upon IS stimulation in CKD status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号