首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 717 毫秒
1.
Ascorbic acid (AA) increases cardiomyogenesis of embryonic stem (ES) cells. Herein we show that treatment of mouse ES cells with AA enhanced cardiac differentiation accompanied by an upregulation of the NADPH oxidase isoforms NOX2 and NOX4, phosphorylation of endothelial nitric oxide synthase (eNOS), and cyclic GMP (cGMP) formation, indicating that reactive oxygen species (ROS) as well as nitric oxide (NO) may be involved in cardiomyogenesis. In whole mount embryoid bodies as well as isolated Flk-1-positive (Flk-1+) cardiovascular progenitor cells ROS elevation by AA was observed in early stages of differentiation (Days 4-7), and absent at Day 10. In contrast NO generation following incubation with AA was absent at Day 4 and increased at Days 7 and 10. AA-mediated cardiomyogenesis was blunted by the NADPH oxidase inhibitors diphenylen iodonium (DPI) and apocynin, the free radical scavengers N-(2-mercaptopropionyl)-glycine (NMPG) and ebselen, and the NOS inhibitor L-NAME. Downregulation of NOX4 by short hairpin RNA (shRNA) resulted in significant inhibition of cardiomyogenesis and abolished the stimulation of MHC-ß and MLC2v gene expression observed on AA treatment. Our data demonstrate that AA stimulates cardiomyocyte differentiation from ES cells by signaling pathways that involve ROS generated at early stages and NO at late stages of cardiomyogenesis.  相似文献   

2.
3.
The effects of electromagnetic fields (EMFs) on the differentiation of cardiomyocytes in embryoid bodies derived from pluripotent embryonic stem (ES) cells were investigated. A single direct current (DC) field pulse was applied to 4-day-old embryoid bodies. The electrical field induced a hyperpolarization of the anode-facing side of embryoid bodies and a depolarization at the cathode-facing side. Significant effects of a single electrical field pulse applied for 90 s on cardiomyocyte differentiation were achieved with field strengths of 250 and 500 V/m, which increased both the number of embryoid bodies differentiating beating foci of cardiomyocytes and the size of the beating foci. The 500-V/m electrical field increased intracellular reactive oxygen species (ROS), but not [Ca(2+)](i) and activated nuclear factor kappa B (NF-kappaB). A comparable increase in the number of beating embryoid bodies was achieved by an incubation for 1 h with H(2)O(2) (1-10 nM), indicating that the electrical field effect was transduced via the intracellular generation of ROS. Because the radical scavengers dehydroascorbate and pyrrolidinedithiocarbamate (APDC) and the NF-kappaB antagonist N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) inhibited cardiac differentiation, we assume that ROS and NF-kappaB may play a role in early cardiac development.  相似文献   

4.
LPS, the primary constituent of the outer membrane of Gram-negative bacteria, is recognized by TLR4. Binding of TLR4 to LPS triggers various cell signaling pathways including NF-kappaB activation and reactive oxygen species (ROS) production. In this study, we present the data that LPS-induced ROS generation and NF-kappaB activation are mediated by a direct interaction of TLR4 with (NAD(P)H oxidase 4 (Nox) 4), a protein related to gp91phox (Nox2) of phagocytic cells, in HEK293T cells. Yeast two hybrid and GST pull-down assays indicated that the COOH-terminal region of Nox4 interacted with the cytoplasmic tail of TLR4. Knockdown of Nox4 by transfection of small interference RNA specific to the Nox4 isozyme in HEK293T cells expressing TLR4 along with MD2 and CD14 resulted in inhibition of LPS-induced ROS generation and NF-kappaB activation. Taken together, these results indicate that direct interaction of TLR4 with Nox4 is involved in LPS-mediated ROS generation and NF-kappaB activation.  相似文献   

5.
6.
7.
8.
Dendritic cells (DCs) are the most potent antigen-presenting cells equipped to transport antigens from the periphery to lymphoid tissues and to present them to T cells. Ligation of Toll-like receptor 4 (TLR4), expressed on the DC surface, by lipopolysaccharides (LPS), elements of the Gram-negative bacteria outer wall, induces DC maturation. Initial steps of maturation include stimulation of antigen endocytosis and enhanced reactive oxygen species (ROS) production with eventual downregulation of endocytic capacity in fully matured DCs. ROS production depends on NADPH oxidase (NOX2), the activity of which requires continuous pH and charge compensation. The present study demonstrates, for the first time, the functional expression of voltage-gated proton (Hv1) channels in mouse bone marrow-derived DCs. In whole cell patch-clamp experiments, we recorded Zn(2+) (50 μM)-sensitive outwardly rectifying currents activated upon depolarization, which were highly selective for H(+), with the reversal potential shift of 38 mV per pH unit. The threshold voltage of activation (V(threshold)) was dependent on the pH gradient and was close to the empirically predicted V(threshold) for the Hv1 currents. LPS (1 μg/ml) had bimodal effects on Hv1 channels: acute LPS treatment increased Hv1 channel activity, whereas 24 h of LPS incubation significantly inhibited Hv1 currents and decreased ROS production. Activation of H(+) currents by acute application of LPS was abolished by PKC inhibitor GFX (10 nM). According to electron current measurements, acute LPS application was associated with increased NOX2 activity.  相似文献   

9.
10.
NADPH oxidase 4 (NOX4) and the NOX4-related redox signaling are implicated in cardiac hypertrophy. NOX4 is interrelated with endoplasmic reticulum stress (ERS). Spliced X-box binding protein 1 (Xbp1s) is a key mediator of ERS while its role in cardiac hypertrophy is still poorly understood. Recently, receptor interacting protein kinase 1(RIPK1) has been increasingly reported to be associated with ERS. Therefore, we aimed to test the hypothesis that Xbp1s mediates NOX4-triggered cardiac hypertrophy via RIPK1 signaling. In the heart tissue of transverse aortic constriction (TAC) rats and in primary cultured neonatal cardiomyocytes(NCMs) treated with angiotensinII(AngII) or isoproterenol (ISO), NOX4 expression and reactive oxygen species (ROS) generation, and expression of Xbp1s as well as RIPK1-related phosphorylation of P65 subunit of NF-κB were elevated. Gene silencing of NOX4 by specific small interfering RNA (siRNA) significantly blocked the upregulation of NOX4, generation of ROS, splicing of Xbp1 and activation of the RIPK1-related NF-κB signaling, meanwhile attenuated cardiomyocyte hypertrophy. In addition, ROS scavenger (N-acetyl-L-cysteine, NAC) and NOX4 inhibitor GKT137831 reduced ROS generation and alleviated activation of Xbp1 and RIPK1-related NF-κB signaling. Furthermore, splicing of Xbp1 was responsible for the increase in RIPK1 expression in AngII or ISO-treated NCMs. Upregulated RIPK1 in turn activates NF-κB signaling in a kinase activity-independent manner. These findings suggest that Xbp1s plays an important role in NOX4-triggered cardiomyocyte hypertrophy via activating its downstream effector RIPK1, which may prove significant for the development of future therapeutic strategies.  相似文献   

11.
Reactive oxygen species (ROS) are generated in the vascular wall upon stimulation by proinflammatory cytokines and are important mediators of diverse cellular responses that occur as a result of vascular injury. Members of the NADPH oxidase (NOX) family of proteins have been identified in vascular smooth muscle (VSM) cells as important sources of ROS. In this study, we tested the hypothesis that NOX4 is a proximal mediator of IL-1β-dependent activation of PKCδ and increases IL-1β-stimulated c-Jun kinase (JNK) signaling in primary rat aortic VSM cells. We found that stimulation of VSM cells with IL-1β increased PKCδ activity and intracellular ROS generation. SiRNA silencing of NOX4 but not NOX1 ablated the IL-1β-dependent increase in ROS production. Pharmacological inhibition of PKCδ activity as well as siRNA depletion of PKCδ or NOX4 blocked the IL-1β-dependent activation of JNK. Further studies showed that the IL-1β-dependent upregulation of inducible NO synthase expression was inhibited through JNK inhibition and NOX4 silencing. Taken together, these results indicate that IL-1β-dependent activation of PKCδ is modulated by NOX4-derived ROS. Our study positions PKCδ as an important redox-sensitive mediator of IL-1β-dependent signaling and downstream activation of inflammatory mediators in VSM cells.  相似文献   

12.
Yuan H  Lu Y  Huang X  He Q  Man Y  Zhou Y  Wang S  Li J 《The FEBS journal》2010,277(24):5061-5071
Defects in insulin secretion by pancreatic cells and/or decreased sensitivity of target tissues to insulin action are the key features of type 2 diabetes. It has been shown that excessive generation of reactive oxygen species (ROS) is linked to glucose-induced β-cell dysfunction. However, cellular mechanisms involved in ROS generation in β-cells and the link between ROS and glucose-induced β-cell dysfunction are poorly understood. Here, we demonstrate a key role of NADPH oxidase 2 (NOX2)-derived ROS in the deterioration of β-cell function induced by a high concentration of glucose. Sprague-Dawley rats were fed a high-fat diet for 24 weeks to induce diabetes. Diabetic rats showed increased glucose levels and elevated ROS generation in blood, but decreased insulin content in pancreatic β-cells. In vitro, increased ROS levels in pancreatic NIT-1 cells exposed to high concentrations of glucose (33.3 mmol·L(-1)) were associated with elevated expression of NOX2. Importantly, decreased glucose-induced insulin expression and secretion in NIT-1 cells could be rescued via siRNA-mediated NOX2 reduction. Furthermore, high glucose concentrations led to apoptosis of β-cells by activation of p38MAPK and p53, and dysfunction of β-cells through phosphatase and tensih homolog (PTEN)-dependent Jun N-terminal kinase (JNK) activation and protein kinase B (AKT/PKB) inhibition, which induced the translocation of forkhead box O1 and pancreatic duodenal homeobox-1, followed by reduced insulin expression and secretion. In conclusion, NOX2-derived ROS could play a critical role in high glucose-induced β-cell dysfunction through PTEN-dependent JNK activation and AKT inhibition.  相似文献   

13.
Polyunsaturated fatty acids (PUFAs) and their metabolites may influence cell fate regulation. Herein, we investigated the effects of linoleic acid (LA) as ω-6 PUFA, eicosapentaenoic acid (EPA) as ω-3 PUFA and palmitic acid (PA) on vasculogenesis of embryonic stem (ES) cells. LA and EPA increased vascular structure formation and protein expression of the endothelial-specific markers fetal liver kinase-1, CD31 as well as VE-cadherin, whereas PA was without effect. LA and EPA increased reactive oxygen species (ROS) and nitric oxide (NO), activated endothelial NO synthase (eNOS) and raised intracellular calcium. The calcium response was inhibited by the intracellular calcium chelator BAPTA, sulfo-N-succinimidyl oleate which is an antagonist of CD36, the scavenger receptor for fatty acid uptake as well as by a CD36 blocking antibody. Prevention of ROS generation by radical scavengers or the NADPH oxidase inhibitor VAS2870 and inhibition of eNOS by L-NAME blunted vasculogenesis. PUFAs stimulated AMP activated protein kinase-α (AMPK-α) as well as peroxisome proliferator-activated receptor-α (PPAR-α). AMPK activation was abolished by calcium chelation as well as inhibition of ROS and NO generation. Moreover, PUFA-induced vasculogenesis was blunted by the PPAR-α inhibitor GW6471. In conclusion, ω-3 and ω-6 PUFAs stimulate vascular differentiation of ES cells via mechanisms involving calcium, ROS and NO, which regulate function of the energy sensors AMPK and PPAR-α and determine the metabolic signature of vascular cell differentiation.  相似文献   

14.
Lipopolysaccharide (LPS) is a major cell wall component of Gram-negative bacteria and signals through a receptor complex which consists of TLR4, MD-2 and CD14. LPS signaling in macrophages induces the production of many pro-inflammatory molecules, including nitric oxide (NO). In this study, we have shown that folimycin, a macrolide antibiotic and a specific inhibitor of vacuolar ATPase (V-ATPase), inhibits LPS-induced NO production, but not TNFalpha production, in murine elicited peritoneal macrophages. However, folimycin did not affect interferon-gamma induced NO production. LPS-induced iNOS mRNA and protein expression and NF-kappaB activation were also inhibited by folimycin. Interestingly, folimycin-treated cells showed reduced surface expression of TLR4 molecules and dilated Golgi apparatus. These findings suggest that folimycin, by inhibiting V-ATPases, alters intra-Golgi pH, which in turn causes defective processing and reduced surface expression of TLR4 reducing the strength of LPS signaling in murine macrophages.  相似文献   

15.
16.
17.
The loss of vascular integrity is a cardinal feature of acute inflammatory responses evoked by activation of the TLR4 inflammatory cascade. Utilizing in vitro and in vivo models of inflammatory lung injury, we explored TLR4-mediated dysregulated signaling that results in the loss of endothelial cell (EC) barrier integrity and vascular permeability, focusing on Dock1 and Elmo1 complexes that are intimately involved in regulation of Rac1 GTPase activity, a well recognized modulator of vascular integrity. Marked reductions in Dock1 and Elmo1 expression was observed in lung tissues (porcine, rat, mouse) exposed to TLR4 ligand-mediated acute inflammatory lung injury (LPS, eNAMPT) in combination with injurious mechanical ventilation. Lung tissue levels of Dock1 and Elmo1 were preserved in animals receiving an eNAMPT-neutralizing mAb in conjunction with highly significant decreases in alveolar edema and lung injury severity, consistent with Dock1/Elmo1 as pathologic TLR4 targets directly involved in inflammation-mediated loss of vascular barrier integrity. In vitro studies determined that pharmacologic inhibition of Dock1-mediated activation of Rac1 (TBOPP) significantly exacerbated TLR4 agonist-induced EC barrier dysfunction (LPS, eNAMPT) and attenuated increases in EC barrier integrity elicited by barrier-enhancing ligands of the S1P1 receptor (sphingosine-1-phosphate, Tysiponate). The EC barrier-disrupting influence of Dock1 inhibition on S1PR1 barrier regulation occurred in concert with: 1) suppressed formation of EC barrier-enhancing lamellipodia, 2) altered nmMLCK-mediated MLC2 phosphorylation, and 3) upregulation of NOX4 expression and increased ROS. These studies indicate that Dock1 is essential for maintaining EC junctional integrity and is a critical target in TLR4-mediated inflammatory lung injury.  相似文献   

18.
Multipotent mesenchymal stromal cells (MSC) are capable of multi-lineage differentiation and support regenerative processes. In bacterial infections, resident MSC can come intocontact with and need to react to bacterial components. Lipopolysaccharide (LPS), a typical structure of Gram-negative bacteria, increases the proliferation and osteogenic differentiation of MSC. LPS is usually recognized by the toll-like receptor (TLR) 4 and induces pro-inflammatory reactions in numerous cell types. In this study, we quantified the protein expression of TLR4 and CD14 on adipose-derived MSC (adMSC) in osteogenic differentiation and investigated the effect of TLR4 activation by LPS on NF-κB activation, proliferation and osteogenic differentiation of adMSC. We found that TLR4 is expressed on adMSC whereas CD14 is not, and that osteogenic differentiation induced an increase of the amount of TLR4 protein whereas LPS stimulation did not. Moreover, we could show that NF-κB activation via TLR4 occurs upon LPS treatment. Furthermore, we were able to show that competitive inhibition of TLR4 completely abolished the stimulatory effect of LPS on the proliferation and osteogenic differentiation of adMSC. In addition, the inhibition of TLR4 leads to the complete absence of osteogenic differentiation of adMSC, even when osteogenically stimulated. Thus, we conclude that LPS induces proliferation and osteogenic differentiation of adMSC in vitro through the activation of TLR4 and that the TLR4 receptor seems to play a role during osteogenic differentiation of adMSC.  相似文献   

19.
Ectopic expression of HoxB4 in embryonic stem (ES) cells leads to an efficient production of hematopoietic cells, including hematopoietic stem/progenitor cells. Previous studies have utilized a constitutive HoxB4 expression system or tetracycline-regulated HoxB4 expression system to induce hematopoietic cells from ES cells. However, these methods cannot be applied therapeutically due to the risk of transgenes being integrated into the host genome. Here, we report the promotion of hematopoietic differentiation from mouse ES cells and induced pluripotent stem (iPS) cells by transient HoxB4 expression using an adenovirus (Ad) vector. Ad vector could mediate efficient HoxB4 expression in ES cell-derived embryoid bodies (ES-EBs) and iPS-EBs, and its expression was decreased during cultivation, showing that Ad vector transduction was transient. A colony-forming assay revealed that the number of hematopoietic progenitor cells with colony-forming potential in HoxB4-transduced cells was significantly increased in comparison with that in non-transduced cells or LacZ-transduced cells. HoxB4-transduced cells also showed more efficient generation of CD41-, CD45-, or Sca-1-positive cells than control cells. These results indicate that transient, but not constitutive, HoxB4 expression is sufficient to augment the hematopoietic differentiation of ES and iPS cells, and that our method would be useful for clinical applications, such as cell transplantation therapy.  相似文献   

20.
Despite the existence of a functional arginine vasopressin (AVP) system in the adult heart and evidence that AVP induces myogenesis, its significance in cardiomyogenesis is currently unknown. In the present study, we hypothesized a role for AVP in cardiac differentiation of D3 and lineage-specific embryonic stem (ES) cells expressing green fluorescent protein under the control of atrial natriuretic peptide (Anp) or myosin light chain-2V (Mlc-2V) promoters. Furthermore, we investigated the nitric oxide (NO) involvement in AVP-mediated pathways. AVP exposure increased the number of beating embryoid bodies, fluorescent cells, and expression of Gata-4 and other cardiac genes. V1a and V2 receptors (V1aR and V2R) differentially mediated these effects in transgenic ES cells, and exhibited a distinct developmentally regulated mRNA expression pattern. A NO synthase inhibitor, L-NAME, powerfully antagonized the AVP-induced effects on cardiogenic differentiation, implicating NO signaling in AVP-mediated pathways. Indeed, AVP elevated the mRNA and protein levels of endothelial NO synthase (eNOS) through V2R stimulation. Remarkably, increased beating activity was found in AVP-treated ES cells with down-regulated eNOS expression, indicating the significant involvement of additional pathways in cardiomyogenic effects of AVP. Finally, patch clamp recordings revealed specific AVP-induced changes of action potentials and increased L-type Ca2+ (ICa,L) current densities in differentiated ventricular phenotypes. Thus, AVP promotes cardiomyocyte differentiation of ES cells and involves Gata-4 and NO signaling. AVP-induced action potential prolongation appears likely to be linked to the increased ICa,L current in ventricular cells. In conclusion, this report provides new evidence for the essential role of the AVP system in ES cell-derived cardiomyogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号