首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The large-scale preparation of a dialkylglycerophosphocholine with unequal alkyl moieties in positions 1 and 2 is reported.  相似文献   

5.
6.
7.
8.
9.
Polycomb Repressive Complex 2 (PRC2) exhibits key roles in mammalian development through its temporospatial repression of gene expression. EZH1 or EZH2 is the catalytic subunit of PRC2 that mediates the mono-, di- and tri-methylation of histone H3 lysine 27 (H3K27me1/2/3), H3K27me2/me3 being a hallmark of facultative heterochromatin. PRC2 is a chromatin-modifying enzyme that is recruited to a limited number of “nucleation sites”, spreads H3K27 methylation and fosters chromatin compaction. EZH1 and EZH2 exhibit differences in their expression patterns, levels of histone methyltransferase activity (HMT) in the context of PRC2, and DNA/nucleosome binding activity. This suggests that their roles in heterochromatin formation are disparate. Dysregulation of PRC2 activity leads to aberrant gene expression and is implicated in cancer and developmental diseases. In this review, we discuss the distinct function of PRC2/EZH1 and PRC2/EZH2 in the early and late developmental stages. We then discuss the cancers associated with PRC2/EZH1 and PRC2/EZH2.  相似文献   

10.
11.
12.
《Reproductive biology》2022,22(3):100644
The epigenetic mechanism of tissue inhibitor of metalloproteinase 3 (TIMP3), a well-known tumor suppressor, in cervical cancer (CC) is still unclear. Integrated GEO database, protein interaction network, and a pan-cancer analysis revealed a KMT1A/TIMP3 axis in CC. KMT1A was highly expressed, and TIMP3 was poorly expressed in CC tissues and cells. KMT1A inhibited the activity of TIMP3. Silencing of KMT1A hampered the proliferation, migration, invasion, tumorigenesis and metastases of CC cells in vivo, and increased the apoptosis of cells. TIMP3 downregulation promoted the malignant phenotype and in vivo tumorigenesis and metastasis of CC cells. KMT1A downregulation impaired PI3K/AKT pathway in cells, while TIMP3 silencing promoted PI3K/AKT pathway activity. We propose a novel perspective that KMT1A involves in the growth and metastases via the TIMP3/PI3K/AKT axis in CC. In summary, our study identified a vital role played by KMT1A in the development of CC and the epigenetic mechanism, indicating that targeting KMT1A-related pathways could be conducive to the therapies for CC.  相似文献   

13.
Tumour development requires a combination of defects that allow nascent neoplastic cells to become self-sufficient for cell proliferation and insensitive to signals that normally restrain cell growth. Among the latter, evasion of programmed cell death (apoptosis) has proven to be critical for the development and sustained growth of many, perhaps all, cancers. Apoptotic cell death is regulated by complex interactions between pro-survival members and two subgroups of pro-apoptotic members of the B-cell lymphoma-2 (Bcl-2) protein family. In this invited review article, we reminisce on the discovery of Bcl-2, the first regulator of cell death identified, we discuss the mechanisms that control apoptotic cell death, focussing on how defects in this process promote the development and sustained growth of tumours and also affect their responses to anticancer therapeutics and, finally, we describe how current knowledge of the regulatory networks of apoptosis is exploited to develop novel approaches for cancer therapy.  相似文献   

14.
15.
Abnormal metabolism of tumour cells is closely related to the occurrence and development of breast cancer, during which the expression of NF‐E2‐related factor 2 (Nrf2) is of great significance. Metastatic breast cancer is one of the most common causes of cancer death worldwide; however, the molecular mechanism underlying breast cancer metastasis remains unknown. In this study, we found that the overexpression of Nrf2 promoted proliferation and migration of breast cancers cells. Inhibition of Nrf2 and overexpression of Kelch‐like ECH‐associated protein 1 (Keap1) reduced the expression of glucose‐6‐phosphate dehydrogenase (G6PD) and transketolase of pentose phosphate pathway, and overexpression of Nrf2 and knockdown of Keap1 had opposite effects. Our results further showed that the overexpression of Nrf2 promoted the expression of G6PD and Hypoxia‐inducing factor 1α (HIF‐1α) in MCF‐7 and MDA‐MB‐231 cells. Overexpression of Nrf2 up‐regulated the expression of Notch1 via G6PD/HIF‐1α pathway. Notch signalling pathway affected the proliferation of breast cancer by affecting its downstream gene HES‐1, and regulated the migration of breast cancer cells by affecting the expression of EMT pathway. The results suggest that Nrf2 is a potential molecular target for the treatment of breast cancer and targeting Notch1 signalling pathway may provide a promising strategy for the treatment of Nrf2‐driven breast cancer metastasis.  相似文献   

16.
A pool of PTEN localizes to the nucleus. However, the exact mechanism by which nuclear PTEN is regulated remains unclear. We have recently reported that Plk1 specifically phosphorylates PTEN on Ser-380 during mitosis. Here we report that PTEN also localized to chromatin and that chromatin PTEN was removed by a proteasome-dependent process during mitotic exit. Pulldown analysis revealed that Cdh1, but not Cdc20, was significantly associated with PTEN. Cdh1 interacted with PTEN via two separate domains, and their interaction was enhanced by MG132, a proteasome inhibitor. Cdh1 negatively controlled the stability of chromatin PTEN by polyubiquitination. Phosphorylation of PTEN on Ser-380 impaired its interaction with Cdh1, thus positively regulating PTEN stability on chromatin. Significantly, the PTEN interaction with Cdh1 was phosphatase-independent, and Cdh1 knockdown via RNAi led to significant accumulation of chromatin PTEN, delaying mitotic exit. Combined, our studies identify Cdh1 as an important regulator of nuclear/chromatin PTEN during mitosis.  相似文献   

17.
18.
Recent studies have suggested that platelet‐rich plasma (PRP) injections are an effective way to retard intervertebral disc degeneration, but the mechanism of action is unclear. Activated platelets release some growth factors, such as transforming growth factor‐β1 (TGF‐β1), which positively modulate the extracellular matrix of nucleus pulposus cells. The purpose of this study was to explore the mechanism underlying the PRP‐mediated inhibition of intervertebral disc degeneration. In an in vitro study, we found that the proliferation of nucleus pulposus cells was greatly enhanced with 2.5% PRP treatment. The TGF‐β1 concentration was much higher after PRP treatment. PRP administration effectively increased the collagen II, aggrecan and sox‐9 mRNA levels and decreased collagen X levels. However, Western blotting demonstrated that specifically inhibiting TGF‐β1 signalling could significantly prevent nucleus pulpous cellular expression of Smad2/3 and matrix protein. In a rabbit study, magnetic resonance imaging revealed significant recovery signal intensity in the intervertebral discs of the PRP injection group compared with the very low signal intensity in the control groups. Histologically, the PRP plus inhibitor injection group had significantly lower expression levels of Smad2/3 and collagen II than the PRP group. These results demonstrated that a high TGF‐β1 content in the platelets retarded disc degeneration in vitro and in vivo. Inhibiting the TGF‐β1/Smad2/3 pathway could prevent this recovery by inactivating Smad2/3 and down‐regulating the extracellular matrix. Therefore, the TGF‐β1/Smad2/3 pathway might play a critical role in the ability of PRP to retard intervertebral disc degeneration.  相似文献   

19.
GABARAPL1/GEC1 is an early estrogen-induced gene which encodes a protein highly conserved from C. elegans to humans. Overexpressed GABARAPL1 interacts with GABAA or kappa opioid receptors, associates with autophagic vesicles, and inhibits breast cancer cell proliferation. However, the function of endogenous GABARAPL1 has not been extensively studied. We hypothesized that GABARAPL1 is required for maintaining normal autophagic flux, and plays an important role in regulating cellular bioenergetics and metabolism. To test this hypothesis, we knocked down GABARAPL1 expression in the breast cancer MDA-MB-436 cell line by shRNA. Decreased expression of GABARAPL1 activated procancer responses of the MDA-MB-436 cells including increased proliferation, colony formation, and invasion. In addition, cells with decreased expression of GABARAPL1 exhibited attenuated autophagic flux and a decreased number of lysosomes. Moreover, decreased GABARAPL1 expression led to cellular bioenergetic changes including increased basal oxygen consumption rate, increased intracellular ATP, increased total glutathione, and an accumulation of damaged mitochondria. Taken together, our results demonstrate that GABARAPL1 plays an important role in cell proliferation, invasion, and autophagic flux, as well as in mitochondrial homeostasis and cellular metabolic programs.  相似文献   

20.
《Autophagy》2013,9(6):986-1003
GABARAPL1/GEC1 is an early estrogen-induced gene which encodes a protein highly conserved from C. elegans to humans. Overexpressed GABARAPL1 interacts with GABAA or kappa opioid receptors, associates with autophagic vesicles, and inhibits breast cancer cell proliferation. However, the function of endogenous GABARAPL1 has not been extensively studied. We hypothesized that GABARAPL1 is required for maintaining normal autophagic flux, and plays an important role in regulating cellular bioenergetics and metabolism. To test this hypothesis, we knocked down GABARAPL1 expression in the breast cancer MDA-MB-436 cell line by shRNA. Decreased expression of GABARAPL1 activated procancer responses of the MDA-MB-436 cells including increased proliferation, colony formation, and invasion. In addition, cells with decreased expression of GABARAPL1 exhibited attenuated autophagic flux and a decreased number of lysosomes. Moreover, decreased GABARAPL1 expression led to cellular bioenergetic changes including increased basal oxygen consumption rate, increased intracellular ATP, increased total glutathione, and an accumulation of damaged mitochondria. Taken together, our results demonstrate that GABARAPL1 plays an important role in cell proliferation, invasion, and autophagic flux, as well as in mitochondrial homeostasis and cellular metabolic programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号