首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microautoradiography was used to investigate substrate uptake by natural communities of uncultured bacteria from the genus Achromatium. Studies of the uptake of 14C-labelled substrates demonstrated that Achromatium cells from freshwater sediments were able to assimilate 14C from bicarbonate, acetate, and protein hydrolysate; however, 14C-labelled glucose was not assimilated. The pattern of substrate uptake by Achromatium spp. was therefore similar to those of a number of other freshwater and marine sulfur-oxidizing bacteria. Different patterns of radiolabelled bicarbonate uptake were noted for Achromatium communities from different geographical locations and indicated that one community (Rydal Water) possessed autotrophic potential, while the other (Hell Kettles) did not. Furthermore, the patterns of organic substrate uptake within a single population suggested that physiological diversity existed in natural communities of Achromatium. These observations are consistent with and may relate to the phylogenetic diversity observed in Achromatium communities. Incubation of Achromatium-bearing sediment cores from Rydal Water with 35S-labelled sulfate in the presence and absence of sodium molybdate demonstrated that this bacterial population was capable of oxidizing sulfide to intracellular elemental sulfur. This finding supported the role of Achromatium in the oxidative component of a tightly coupled sulfur cycle in Rydal Water sediment. The oxidation of sulfide to sulfur and ultimately to sulfate by Achromatium cells from Rydal Water sediment is consistent with an ability to conserve energy from sulfide oxidation.  相似文献   

2.
Combined microautoradiography and fluorescence in situ hybridization (FISH) was used to investigate carbon metabolism in uncultured bacteria from the genus Achromatium. All of the Achromatium species identified in a freshwater sediment from Rydal Water, Cumbria, United Kingdom, which were distinguishable only by FISH, assimilated both [14C]bicarbonate and [14C]acetate. This extends previous findings that Achromatium spp. present at another location could only utilize organic carbon sources. Achromatium spp., therefore, probably exhibit a range of physiologies, i.e., facultative chemolithoautotrophy, mixotrophy, and chemoorganoheterotrophy, similar to other large sulfur bacteria (e.g., Beggiatoa spp.).  相似文献   

3.
The diversity and ecology of natural communities of the uncultivated bacterium Achromatium oxaliferum were studied by use of culture-independent approaches. 16S rRNA gene sequences were PCR amplified from DNA extracted from highly purified preparations of cells that were morphologically identified as A. oxaliferum present in freshwater sediments from three locations in northern England (Rydal Water, Jenny Dam, Hell Kettles). Cloning and sequence analysis of the PCR-amplified 16S rRNA genes revealed that multiple related but divergent sequences were routinely obtained from the A. oxaliferum communities present in all the sediments examined. Whole-cell in situ hybridization with combinations of fluorescence-labelled oligonucleotide probes revealed that the divergent sequences recovered from purified A. oxaliferum cells corresponded to genetically distinct Achromatium subpopulations. Analysis of the cell size distribution of the genetically distinct subpopulations demonstrated that each was also morphologically distinct. Furthermore, there was a high degree of endemism in the Achromatium sequences recovered from different sediments; identical sequences were never recovered from different sampling locations. In addition to ecological differences that were apparent between Achromatium communities from different freshwater sediments, the distribution of different subpopulations of Achromatium in relation to sediment redox profiles indicated that the genetically and morphologically distinct organisms that coexisted in a single sediment were also ecologically distinct and were adapted to different redox conditions. This result suggests that Achromatium populations have undergone adaptive radiation and that the divergent Achromatium species occupy different niches in the sediments which they inhabit.  相似文献   

4.
Large sulfur bacteria of the genus Achromatium are exceptional among Bacteria and Archaea as they can accumulate high amounts of internal calcite. Although known for more than 100 years, they remain uncultured, and only freshwater populations have been studied so far. Here we investigate a marine population of calcite-accumulating bacteria that is primarily found at the sediment surface of tide pools in a salt marsh, where high sulfide concentrations meet oversaturated oxygen concentrations during the day. Dynamic sulfur cycling by phototrophic sulfide-oxidizing and heterotrophic sulfate-reducing bacteria co-occurring in these sediments creates a highly sulfidic environment that we propose induces behavioral differences in the Achromatium population compared with reported migration patterns in a low-sulfide environment. Fluctuating intracellular calcium/sulfur ratios at different depths and times of day indicate a biochemical reaction of the salt marsh Achromatium to diurnal changes in sedimentary redox conditions. We correlate this calcite dynamic with new evidence regarding its formation/mobilization and suggest general implications as well as a possible biological function of calcite accumulation in large bacteria in the sediment environment that is governed by gradients. Finally, we propose a new taxonomic classification of the salt marsh Achromatium based on their adaptation to a significantly different habitat than their freshwater relatives, as indicated by their differential behavior as well as phylogenetic distance on 16S ribosomal RNA gene level. In future studies, whole-genome characterization and additional ecophysiological factors could further support the distinctive position of salt marsh Achromatium.  相似文献   

5.
Using proteomics-based identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), we conducted the first analysis of the composition of endophytic bacteria isolated from different parts of selected Epipactis species, i.e. the buds, the inflorescences and the central part of the shoots, as well as the rhizomes. We identified aerobic and anaerobic bacteria, including such taxa as Bacillus spp., Clostridium spp., Pseudomonas spp. and Stenotrophomonas spp., which may be considered as promoting plant growth. Because most of the indicated bacteria genera belong to spore-producing taxa (spores allow bacterial symbionts to survive adverse conditions), we suggest that these bacteria species contribute to the adaptation of orchids to the environment. We found clear differences in the microbiome between investigated closely related taxa, i.e., Epipactis albensis, E. helleborine, E. purpurata and E. purpurata f. chlorophylla. Some of the analysed orchid species, i.e. E. albensis and E. purpurata co-occur in habitats, and their bacterial microbiomes differ from each other.  相似文献   

6.
The gills of Carcinus maenas were examined by light and electron microscopy following injection of either sterile saline or the bacteria Bacillus cereus and Moraxella sp., to determine any role(s) for the nephrocytes in the host defense reactions. The results showed that although intact bacteria were not sequestered to the nephrocytes, these cells were active in the removal of large quantities of cell debris from the hemolymph. Much of this material was derived from the breakdown of the hemocytes in response to the presence of bacteria and it's accumulation in the central vacuoles of the nephrocytes resulted in the degradation of these cells. It is proposed that while nephrocytes do not phagocytose intact bacteria, they augment the host defenses by clearing much of the hemocyte and associated bacterial debris from the gills, thus preventing blockage of the lamellar sinuses and subsequent impairment of respiration.  相似文献   

7.
Like most eukaryotes, brown algae live in association with bacterial communities that frequently have beneficial effects on their development. Ectocarpus is a genus of small filamentous brown algae, which comprises a strain that has recently colonized freshwater, a rare transition in this lineage. We generated an inventory of bacteria in Ectocarpus cultures and examined the effect they have on acclimation to an environmental change, that is, the transition from seawater to freshwater medium. Our results demonstrate that Ectocarpus depends on bacteria for this transition: cultures that have been deprived of their associated microbiome do not survive a transfer to freshwater, but restoring their microflora also restores the capacity to acclimate to this change. Furthermore, the transition between the two culture media strongly affects the bacterial community composition. Examining a range of other closely related algal strains, we observed that the presence of two bacterial operational taxonomic units correlated significantly with an increase in low salinity tolerance of the algal culture. Despite differences in the community composition, no indications were found for functional differences in the bacterial metagenomes predicted to be associated with algae in the salinities tested, suggesting functional redundancy in the associated bacterial community. Our study provides an example of how microbial communities may impact the acclimation and physiological response of algae to different environments, and thus possibly act as facilitators of speciation. It paves the way for functional examinations of the underlying host–microbe interactions, both in controlled laboratory and natural conditions.  相似文献   

8.
At the Nakabusa hot spring, Japan, dense olive-green microbial mats develop in regions where the slightly alkaline, sulfidic effluent has cooled to 65 °C. The microbial community of such mats was analyzed by focusing on the diversity, as well as the in situ distribution and function of bacteria involved in sulfur cycling. Analyses of 16S rRNA and functional genes (aprA, pufM) suggested the importance of three thermophilic bacterial groups: aerobic chemolithotrophic sulfide-oxidizing species of the genus Sulfurihydrogenibium (Aquificae), anaerobic sulfate-reducing species of the genera Thermodesulfobacterium/Thermodesulfatator, and filamentous anoxygenic photosynthetic species of the genus Chloroflexus. A new oligonucleotide probe specific for Sulfurihydrogenibium was designed and optimized for catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). In situ hybridizations of thin mat sections showed a heterogeneous vertical distribution of Sulfurihydrogenibium and Chloroflexus. Sulfurihydrogenibium dominated near the mat surface (50% of the total mat biovolume), while Chloroflexus dominated in deeper layers (up to 64% of the total mat biovolume). Physiological experiments monitoring in vitro changes of sulfide concentration indicated slight sulfide production by sulfate-reducing bacteria under anoxic-dark conditions, sulfide consumption by photosynthetic bacteria under anoxic-light conditions and strong sulfide oxidation by chemolithotrophic members of Aquificae under oxic-dark condition. We therefore propose that Sulfurihydrogenibium spp. act as highly efficient scavengers of oxygen from the spring water, thus creating a favorable, anoxic environment for Chloroflexus and Thermodesulfobacterium/Thermodesulfatator in deeper layers.  相似文献   

9.
Nitrite-dependent anaerobic methane oxidation (n-damo), mainly carried out by n-damo bacteria, is an important pathway for mitigating methane emission from freshwater lakes. Although n-damo bacteria have been detected in a variety of freshwater lakes, their potential and distribution, and associated environmental factors, remain unclear. Therefore, the current study investigated the potential and distribution of anaerobic methanotrophs in sediments from Erhai Lake and Dianchi Lake, two adjacent freshwater lakes in the Yunnan Plateau with different trophic status. Both lakes showed active anaerobic methane oxidation potential and harbored a high density of n-damo bacteria. Based on the n-damo pmoA gene, sediment n-damo bacterial communities mainly consisted of Candidatus Methylomirabils oxyfera and Candidatus Methylomirabils sinica, as well as novel n-damo organisms. Sediment anaerobic methane oxidation potential and the n-damo bacterial community showed notable differences among seasons and between lakes. The environmental variables associated with lake trophic status (e.g. total nitrogen, ammonia nitrogen, nitrate nitrogen, and total organic carbon) might have significant impacts on the anaerobic methane oxidation potential, as well as the abundance and community structure of n-damo bacteria. Therefore, trophic status could determine the n-damo process in freshwater lake sediment.  相似文献   

10.
Seasonal studies of the anoxygenic phototrophic bacterial community of the water column of the saline eutrophic meromictic Lake Shunet (Khakassia) were performed in 2002 (June) and 2003 (February–March and August). From the redox zone down, the lake water was of dark green color. Green sulfur bacteria predominated in every season. The maximum number of green sulfur bacteria was 107 cells/ml in summer and 106 cells/ml in winter. A multi-syringe stratification sampler was applied for the study of the fine vertical distribution of phototrophs in August 2003; the sampling was performed every 5 cm. A 5-cm-thick pink-colored water layer inhabited by purple sulfur bacteria was shown to be located above the layer of green bacteria. The species composition and ratio of purple bacterial species depended on the sampling depth and on the season. In summer, the number of purple sulfur bacteria in the layer of pink water was 1.6 × 108 cells/ml. Their number in winter was 3 × 105 cells/ml. In the upper oxygen-containing layer of the chemocline the cells of purple nonsulfur bacteria were detected in summer. The maximum number of nonsulfur purple bacteria, 5 × 102 cells/ml, was recorded in August 2003. According to the results of the phylogenetic analysis of pure cultures of the isolated phototrophic bacteria, which were based on 16S rDNA sequencing, green sulfur bacteria were close to Prosthecochloris vibrioformis, purple sulfur bacteria, to Thiocapsa and Halochromatium species, and purple nonsulfur bacteria, to Rhodovulum euryhalinum and Pinkicyclus mahoneyensis.  相似文献   

11.
The feasibility of recovering metal values and removing hazardous elements from the Pb/Zn smelting slag using bioleaching technique were studied through a flask experiment, and the community characteristics of the indigenous moderate-thermophilic bacteria in this bioleaching system were also analyzed through a culture-independent restriction fragment length polymorphism (RFLP) of 16S rRNA genes approach. The results show that more than 80% of Al, As, Cu, Mn, Fe and Zn in the Pb/Zn smelting slag were leached at 65 oC, pH 1.5, pulp density 5%, but only about 5% of Pb. Phylogenetic analysis revealed that the bacteria in the bioleaching system mainly fell among Firmicutes, Gammaproteobacteria and Betaproteobacteria, and the dominant bacteria are affiliated with Bacillus spp., Sporosarcina spp. and Pseudomonas spp.  相似文献   

12.
13.
The genes of collagen-like proteins (CLPs) have been identified in a broad range of bacteria, including some human pathogens. They are important for biofilm formation and bacterial adhesion to host cells in some human pathogenic bacteria, including several Bacillus spp. strains. Interestingly, some bacterial CLP-encoding genes (clps) have also been found in non-human pathogenic strains such as B. cereus and B. amyloliquefaciens, which are types of plant-growth promoting rhizobacteria (PGPR). In this study, we investigated a putative cluster of clps in B. amyloliquefaciens strain FZB42 and a collagen-related structural motif containing glycine-X-threonine repeats was found in the genes RBAM_007740, RBAM_007750, RBAM_007760, and RBAM_007770. Interestingly, biofilm formation was disrupted when these genes were inactivated separately. Scanning electron microscopy and hydrophobicity value detection were used to assess the bacterial cell shape morphology and cell surface architecture of clps mutant cells. The results showed that the CLPs appeared to have roles in bacterial autoaggregation, as well as adherence to the surface of abiotic materials and the roots of Arabidopsis thaliana. Thus, we suggest that the CLPs located in the outer layer of the bacterial cell (including the cell wall, outer membrane, flagella, or other associated structures) play important roles in biofilm formation and bacteria-plant interactions. This is the first study to analyze the function of a collagen-like motif-containing protein in a PGPR bacterium. Knocking out each clp gene produced distinctive morphological phenotypes, which demonstrated that each product may play specific roles in biofilm formation. Our in silico analysis suggested that these four tandemly ranked genes might not belong to an operon, but further studies are required at the molecular level to test this hypothesis. These results provide insights into the functions of clps during interactions between bacteria and plants.  相似文献   

14.
Cycling primed in situ amplification-fluorescent in situ hybridization (CPRINS-FISH) was developed to recognize individual genes in a single bacterial cell. In CPRINS, the amplicon was long single-stranded DNA and thus retained within the permeabilized microbial cells. FISH with a multiply labeled fluorescent probe set enabled significant reduction in nonspecific background while maintaining high fluorescence signals of target bacteria. The ampicillin resistance gene in Escherichia coli, chloramphenicol acetyltransferase gene in different gram-negative strains, and RNA polymerase sigma factor (rpoD) gene in Aeromonas spp. could be detected under identical permeabilization conditions. After concentration of environmental freshwater samples onto polycarbonate filters and subsequent coating of filters in gelatin, no decrease in bacterial cell numbers was observed with extensive permeabilization. The detection rates of bacterioplankton in river and pond water samples by CPRINS-FISH with a universal 16S rRNA gene primer and probe set ranged from 65 to 76% of total cell counts (mean, 71%). The concentrations of cells detected by CPRINS-FISH targeting of the rpoD genes of Aeromonas sobria and A. hydrophila in the water samples varied between 2.1 × 103 and 9.0 × 103 cells ml−1 and between undetectable and 5.1 × 102 cells ml−1, respectively. These results demonstrate that CPRINS-FISH provides a high sensitivity for microscopic detection of bacteria carrying a specific gene in natural aquatic samples.  相似文献   

15.
Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures.  相似文献   

16.
Ticks represent a large group of pathogen vectors that blood feed on a diversity of hosts. In the Americas, the Ixodidae ticks Amblyomma cajennense are responsible for severe impact on livestock and public health. In the present work, we present the isolation and molecular identification of a group of culturable bacteria associated with A. cajennense eggs from females sampled in distinct geographical sites in southeastern Brazil. Additional comparative analysis of the culturable bacteria from Anocentor nitens, Rhipicephalus sanguineus and Ixodes scapularis tick eggs were also performed. 16S rRNA gene sequence analyses identified 17 different bacterial types identified as Serratia marcescens, Stenotrophomonas maltophilia, Pseudomonas fluorescens, Enterobacter spp., Micrococcus luteus, Ochrobactrum anthropi, Bacillus cereus and Staphylococcus spp., distributed in 12 phylogroups. Staphylococcus spp., especially S. sciuri, was the most prevalent bacteria associated with A. cajennense eggs, occurring in 65% of the samples and also frequently observed infecting A. nitens eggs. S. maltophilia, S. marcescens and B. cereus occurred infecting eggs derived from specific sampling sites, but in all cases rising almost as pure cultures from infected A. cajennense eggs. The potential role of these bacterial associations is discussed and they possibly represent new targets for biological control strategies of ticks and tick borne diseases.  相似文献   

17.
Aeromonas spp. are characteristic bacteria of freshwaters and many of them can be components of the bacterial flora of aquatic animals and may become pathogens on animals including humans. In this study Aeromonas hydrophila was isolated from the freshwater crayfish, Pacifastacus leniusculus, and was found to be a highly pathogenic bacterium among many isolated bacteria. Mortality reached 100% within 6 h when 200 μl of 1.24 × 107 CFU/ml was applied by injection. Histopathological studies of moribund crayfish showed that extensive necrotic nuclei and clump-infiltrated hemocytes were found in observed tissues including gill, heart, hepatopancreas and the circulatory system. To verify how crayfish are susceptible to this bacterium, crude extracellular products (ECPs) obtained from culture supernatant of A. hydrophila was studied either in vivo or in vitro. ECPs (200 μl) were able to kill crayfish by injection. In an in vitro study, ECPs induced cytotoxicity of hemocytes as well as hematopoietic cells in a dose- and time-dependent manner after 30 min post inoculation. Two genes coding for endotoxins were also found in this isolate of A. hydrophila. This indicates that the bacterial endotoxins are the causative agents of crayfish mortality. Moreover, the effect of temperature on the infectivity of A. hydrophila to crayfish was also studied. At 4 °C, all crayfish survived, whereas at 20 °C the animals died rapidly after bacterial challenge. At this low temperature A. hydrophila did not replicate or replicated at a very low degree and hence crayfish could probably mount effective cellular reactions towards A. hydrophila.  相似文献   

18.
Horizontal transfer of antibiotic resistance genes in a membrane bioreactor   总被引:1,自引:0,他引:1  
Growing attention has been paid to the dissemination of antibiotic resistance genes (ARGs) in wastewater microbial communities. The application of membrane bioreactors (MBRs) in wastewater treatment is becoming increasingly widespread. We hypothesized that the transfer of ARGs among bacteria could occur in MBRs, which combine a high density of bacterial cells, biofilms, and antibiotic resistance bacteria or ARGs. In this study, the transfer discipline and dissemination of the RP4 plasmid in MBRs were investigated by the counting plate method, the MIDI microorganism identification system, and quantitative polymerase chain reaction (qPCR) techniques. The results showed that the average transfer frequency of the RP4 plasmid from the donor strain to cultivable bacteria in activated sludge was 2.76 × 10−5 per recipient, which was greater than the transfer frequency in wastewater and bacterial sludge reported previously. In addition, many bacterial species in the activated sludge had received RP4 by horizontal transfer, while the genera of Shewanella spp., Photobacterium spp., Pseudomonas spp., Proteus spp., and Vibrio spp. were more likely to acquire this plasmid. Interestingly, the abundance of the RP4 plasmid in total DNA remained at high levels and relatively stable at 104 copies/mg of biosolids, suggesting that ARGs were transferred from donor strains to activated sludge bacteria in our study. Thus, the presence of ARGs in sewage sludge poses a potential health threat.  相似文献   

19.
Emerging infectious diseases usually arise from wild animal populations. In the present work, we performed a screening for bacterial infection in natural populations of New World primates. The blood cell bulk DNAs from 181 individuals of four Platyrrhini genera were PCR screened for eubacterial 16S rRNA genes. Bacteria were detected and identified in 13 distinct individuals of Alouatta belzebul, Alouatta caraya, and Cebus apella monkeys from geographically distant regions in the states of Mato Grosso and Pará, Brazil. Sequence analyses showed that these Platyrrhini bacteria are closely related not only to human pathogens Pseudomonas spp. but also to Pseudomonas simiae and sheep-Acari infecting Pseudomonas spp. The identified Pseudomonas possibly represents a group of bacteria circulating in natural monkey populations.  相似文献   

20.
Population indices of bacteria and archaea were investigated from saline–alkaline soil and a possible microbe–environment pattern was established using gene targeted metagenomics. Clone libraries were constructed using 16S rRNA and functional gene(s) involved in carbon fixation (cbbL), nitrogen fixation (nifH), ammonia oxidation (amoA) and sulfur metabolism (apsA). Molecular phylogeny revealed the dominance of Actinobacteria, Firmicutes and Proteobacteria along with archaeal members of Halobacteraceae. The library consisted of novel bacterial (20%) and archaeal (38%) genera showing ≤95% similarity to previously retrieved sequences. Phylogenetic analysis indicated ability of inhabitant to survive in stress condition. The 16S rRNA gene libraries contained novel gene sequences and were distantly homologous with cultured bacteria. Functional gene libraries were found unique and most of the clones were distantly related to Proteobacteria, while clones of nifH gene library also showed homology with Cyanobacteria and Firmicutes. Quantitative real-time PCR exhibited that bacterial abundance was two orders of magnitude higher than archaeal. The gene(s) quantification indicated the size of the functional guilds harboring relevant key genes. The study provides insights on microbial ecology and different metabolic interactions occurring in saline–alkaline soil, possessing phylogenetically diverse groups of bacteria and archaea, which may be explored further for gene cataloging and metabolic profiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号