首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incidence of testicular germ cell cancer has been increasing over recent decades in many countries of the world. Many studies over recent years have reported adverse trends in other aspects of male reproductive health, such as high and possibly increasing frequencies of undescended testis and hypospadias, declining semen quality, and an apparently growing demand for assisted reproduction due to male infertility. This article summarises the available evidence supporting a new concept that these male reproductive abnormalities may be signs of a single underlying entity: testicular dysgenesis syndrome (TDS). This syndrome, caused by nonspecific delays and aberrations of early testicular development, may be increasingly common because of deteriorating environmental and life-style factors that impair gonadal development. Geographical and ethnic differences in the incidence of various forms of TDS could be explained either by differences in exposure to adverse factors or by differences in genetic susceptibility to these factors.  相似文献   

2.
Over the last couple of generations, we have been exposed to an increasing number of endocrine disrupters in our environment, including dichlorodiphenyltrichloroethane (DDT), PCB, certain pesticides, the phthalate DBP, synthetic steroids in meat and many other agents (table 1), which act as agonists or antagonists of sex steroids. Although biologists working with wildlife have been concerned about the possible effects of these chemical agents on animal reproduction, it appears that clinicians have been less concerned about possible health effects in humans. However, the increasing incidence of hormone-dependent cancers, including cancer of the breast, prostate and testis, and signs of an increasing incidence of male reproductive health problems should alert us to the possible association between exposure to endocrine disrupters and the current high frequency of reproductive problems. In Denmark, for example, 5% of all children are now born after assisted reproduction (intracytoplasmic sperm injection, in vitro fertilization, donor insemination and intrauterine insemination) and 1% of all (mostly young) men develop testicular cancer. Evidence exists to support the concept that hypospadias, undescended testis, poor semen quality and testicular cancer are symptoms of an underlying testicular dysgenesis syndrome, which may be becoming increasingly common due to adverse environmental effects. Experimental and epidemiological evidence suggests that testicular dysgenesis syndrome is a result of disruption of foetal programming and gonadal development during foetal life.  相似文献   

3.
Androgen-disruptors are environmental chemicals in that interfere with the biosynthesis, metabolism or action of endogenous androgens resulting in a deflection from normal male developmental programming and reproductive tract growth and function. Since male sexual differentiation is entirely androgen-dependent, it is highly susceptible to androgen-disruptors. Animal models and epidemiological evidence link exposure to androgen disrupting chemicals with reduced sperm counts, increased infertility, testicular dysgenesis syndrome, and testicular and prostate cancers. Further, there appears to be increased sensitivity to these agents during critical developmental windows when male differentiation is at its peak. A variety of in vitro and in silico approaches have been used to identify broad classes of androgen disrupting molecules that include organochlorinated pesticides, industrial chemicals, and plasticizers with capacity to ligand the androgen receptor. The vast majority of these synthetic molecules act as anti-androgens. This review will highlight the evidence for androgen disrupting chemicals that act through interference with the androgen receptor, discussing specific compounds for which there is documented in vivo evidence for male reproductive tract perturbations. This article is part of a Special Issue entitled 'Endocrine disruptors'.  相似文献   

4.
Cryptorchidism: an indicator of testicular dysgenesis?   总被引:6,自引:0,他引:6  
Cryptorchidism is a common ailment of new-born boys, affecting 1–9% of full term boys at birth. Cryptorchidism has been associated with an increased risk of testicular cancer and reduced fertility. Aetiology of cryptorchidism remains obscure in most cases. Familial occurrence suggests a heritable susceptibility to cryptorchidism; however, seasonal variation in the incidence of cryptorchidism suggests that environmental factors also contribute. Testicular descent is characterised by androgen-dependent regression of cranial suspensory ligament and androgen + insulin-like hormone 3 (Insl3)-dependent gubernacular outgrowth. Even though hormonal defects are rarely detected in patients, both hypo-and hypergonadotropic hormonal patterns have been associated with cryptorchidism. Moreover, cryptorchid boys have significantly reduced serum androgen bioactivity at 3 months of age when normal boys have a strong surge of reproductive hormones. Defects in Insl3 action cause cryptorchidism in male mice, and over-expression in female mice causes ovarian descent. Defects in leucine-rich repeat-containing G-protein-coupled receptor 8/G-protein-coupled receptor affecting testis descent (LGR8/GREAT), the receptor for Insl3, manifest the same phenotype as Insl3 knockout mutants. Even though mutations found in Insl3 and LGR8/GREAT genes are not a common cause of cryptorchidism in patients, it remains to be resolved whether low Insl3 levels during development are associated with cryptorchidism. Cryptorchidism may reflect foetal testicular dysgenesis that may later manifest as subfertility or testicular cancer.This work was supported by the Turku University Central Hospital, the Academy of Finland and the European Commission (contracts BMH4-CT96-0314, QLK4-CT1999-01422, QLK4-CT2001-00269 and QLK4-CT2002-00603).  相似文献   

5.
The syndrome of pure gonadal dysgenesis (PGD) cannot always easily be distinguished from other disorders of gonadal development. Relations are evident with Turner's syndrome, females with hypoplastic ovaries, male pseudohermaphroditism, mixed gonadal dysgenesis and the vanishing testes syndrome. The case is reported of a 40 year old female with primary amenorrhea, alopecia, eunuchoid features, XY karyotype with normal breast development and sexual hair after estrogen therapy. On laparotomy streak ovaries were found at ovarian site. Pathohistological examination revealed on the left side wolffian duct remnants such as ductuli deferentes and epididymis besides sparse Leydig-(hilus-)cells and on the right side only a rudimentary fallopian tube with subendothelial accumulation of hyperplastic Leydig-(hilus-)cells. Serum-testosterone elevation above the normal female range (630 ng/dl) persisted following gonadectomy (151 ng/dl). Ectopic Leydig-(hilus-)cells were regarded responsible for the continuing testosterone production. The present case lies on borderline between PGD and mixed gonadal dysgenesis because remnants of wolffian duct derivatives suggest unilateral fetal testicular activity; classification as PGD however was justified in purely female body features and lacking evidence of testicular tissue.  相似文献   

6.
Components used in plastics, such as phthalates, bisphenol A (BPA), polybrominated diphenyl ethers (PBDE) and tetrabromobisphenol A (TBBPA), are detected in humans. In addition to their utility in plastics, an inadvertent characteristic of these chemicals is the ability to alter the endocrine system. Phthalates function as anti-androgens while the main action attributed to BPA is oestrogen-like activity. PBDE and TBBPA have been shown to disrupt thyroid hormone homeostasis while PBDEs also exhibit anti-androgen action. Experimental investigations in animals indicate a wide variety of effects associated with exposure to these compounds, causing concern regarding potential risk to human health. For example, the spectrum of effects following perinatal exposure of male rats to phthalates has remarkable similarities to the testicular dysgenesis syndrome in humans. Concentrations of BPA in the foetal mouse within the range of unconjugated BPA levels observed in human foetal blood have produced effects in animal experiments. Finally, thyroid hormones are essential for normal neurological development and reproductive function. Human body burdens of these chemicals are detected with high prevalence, and concentrations in young children, a group particularly sensitive to exogenous insults, are typically higher, indicating the need to decrease exposure to these compounds.  相似文献   

7.
8.
Regulation of testicular descent is hormonally regulated, but the reasons for maldescent remain unknown in most cases. The main regulatory hormones are Leydig cell-derived testosterone and insulin-like factor 3 (INSL3). Luteinizing hormone (LH) stimulates the secretion of these hormones, but the secretory responses to LH are different: INSL3 secretion increases slowly and may reflect the LH dependent differentiated status of Leydig cells, whereas testosterone response to LH is immediate. Testosterone contributes to the involution of the suspensory ligament and to the inguinoscrotal phase of the descent, while INSL3 acts mainly in transabdominal descent by stimulating the growth of the gubernaculum. INSL3 acts through a G-protein coupled receptor LGR8. In the absence of either INSL3 or LGR8 mice remain cryptorchid. In humans only few INSL3 mutations have been described, whereas LGR8 mutations may cause some cases of undescended testis. Similarly, androgen insensitivity or androgen deficiency can cause cryptorchidism. Estrogens have been shown to down regulate INSL3 and thereby cause maldescent. Thus, a reduced androgen–estrogen ratio may disturb testicular descent. Environmental effects changing the ratio can thereby influence cryptorchidism rate. Estrogens and anti-androgens cause cryptorchidism in experimental animals. In our cohort study we found higher LH/testosterone ratios in 3-month-old cryptorchid boys than in normal control boys, suggesting that cryptorchid testes are not cabable of normal hormone secretion without increased gonadotropin drive. This may be either the cause or consequence of cryptorchidism. Some phthalates act as anti-androgens and cause cryptorchidism in rodents. In our human material we found an association of a high phthalate exposure with a high LH/testosterone ratio. We hypothesize that an exposure to a mixture of chemicals with anti-androgenic or estrogenic properties (either their own activity or their effect on androgen–estrogen ratio) may be involved in cryptorchidism.  相似文献   

9.
A molecular basis for estrogen-induced cryptorchidism   总被引:15,自引:0,他引:15  
Male sexual differentiation relies upon testicular secretion of the hormones testosterone, Mullerian inhibiting substance, and insulin-3 (Insl3). Insl3 is responsible for testicular descent through virilization and outgrowth of the embryonic gubernaculum. In mouse, prenatal exposure to 17beta-estradiol and the nonsteroidal synthetic estrogen diethylstilbestrol (DES) disturbs the endocrine balance, causing demasculinizing and feminizing effects in the male embryo, including impaired testicular descent (cryptorchidism). In the current study, we show that maternal exposure to estrogens, including 17alpha- and beta-estradiol, as well as DES, specifically down regulates Insl3 expression in embryonic Leydig cells, thereby providing a mechanism for cryptorchidism. These experiments may have implications for the widespread use of estrogenic substances in agriculture and the environment.  相似文献   

10.
In the Western world fertility rates are low and infertility is a major health problem. Unofficial statistics from Denmark reveal that about 6% of all Danish children are now born after assisted reproduction techniques, including in vitro fertilization, intracytoplasmic sperm injection, donor insemination or homologous insemination. However, there are no retrospective data on trends in fecundity (ability to conceive). We, and others, have focused on some aspects of adverse trends in male reproductive health such as the rising incidence of testicular cancer, low and probably declining semen quality, high and possibly increasing frequencies of undescended testes and hypospadias. Due to medical specialization and the different ages at presentation of symptoms, reproductive problems used to be analysed separately by various professional groups, for instance paediatric endocrinologists, urologists, andrologists or oncologists. There is evidence that poor semen quality, testicular cancer, undescended testes and hypospadias are symptoms of one underlying entity, testicular dysgenesis syndrome (TDS), which may be increasingly common due to adverse environmental influences. Experimental and epidemiological studies suggest that TDS is the result of disruption of embryonal programming and gonadal development during fetal life. An endocrine disrupter hypothesis to explain the adverse trends has been proposed. It is recommended that future epidemiological studies on trends in male reproductive health should not focus on one symptom alone, but be more comprehensive and take all aspects of TDS into account.  相似文献   

11.
The testicular dysgenesis syndrome (TDS) hypothesis proposes that maldevelopment of the testis, irrespective of cause, leads to malfunction of the somatic (Leydig, Sertoli) cells and consequent downstream TDS disorders. Studies in rats exposed in utero to di(n-butyl) phthalate (DBP) have strongly supported the TDS concept, but so far no direct evidence has been produced that links dysgenesis per se to somatic cell dysfunction, in particular to androgen production/action during the ‘masculinization programming window’ (MPW; e15.5–e18.5). Normal reproductive tract development and anogenital distance (AGD) are programmed within the MPW, and TDS disorders arise because of deficiencies in this programming. However, DBP-induced focal testicular dysgenesis (Leydig cell aggregation, ectopic Sertoli cells, malformed seminiferous cords) is not evident until after the MPW. Therefore, we used AGD as a read-out of androgen exposure in the MPW, and investigated if this measure was related to objectively quantified dysgenesis (Leydig cell aggregation) at e21.5 in male fetuses exposed to vehicle, DBP (500 or 750 mg/kg/day) or the synthetic glucocorticoid dexamethasone (Dex; alone or plus DBP-500) from e15.5–e18.5 (MPW), e13.5–e20.5 or e19.5–e20.5 (late window). Dysgenesis was found only in animals exposed to DBP during the MPW, and was negatively correlated (R2 = −0.5) with AGD at e21.5 and at postnatal day 8, irrespective of treatment period. Dysgenesis was also negatively correlated (R2 = –0.5) with intratesticular testosterone (ITT) at e21.5, but only when treatments in short windows (MPW, late window) were excluded; the same was true for correlation between AGD and ITT. We conclude that AGD, reflecting Leydig cell function solely within the MPW, is strongly related to focal dysgenesis. Our results point to this occurring because of a common early mechanism, targeted by DBP that determines both dysgenesis and early (during the MPW) fetal Leydig cell dysfunction. The findings provide strong validation of the TDS hypothesis.  相似文献   

12.
Mutations in the phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P(2)) 5-phosphatase OCRL cause Lowe syndrome, which is characterised by congenital cataracts, central hypotonia, and renal proximal tubular dysfunction. Previous studies have shown that OCRL interacts with components of the endosomal machinery; however, its role in endocytosis, and thus the pathogenic mechanisms of Lowe syndrome, have remained elusive. Here, we show that via its 5-phosphatase activity, OCRL controls early endosome (EE) function. OCRL depletion impairs the recycling of multiple classes of receptors, including megalin (which mediates protein reabsorption in the kidney) that are retained in engorged EEs. These trafficking defects are caused by ectopic accumulation of PtdIns4,5P(2) in EEs, which in turn induces an N-WASP-dependent increase in endosomal F-actin. Our data provide a molecular explanation for renal proximal tubular dysfunction in Lowe syndrome and highlight that tight control of PtdIns4,5P(2) and F-actin at the EEs is essential for exporting cargoes that transit this compartment.  相似文献   

13.
On the cause of the mammalian descent of the testes (Descensus testiculorum) Two explanations have been offered for the descent of the testes in mammals, both of which are frequently cited in the literature. Moore and co-workers argued that the phylogenetic rise of body temperature caused the translocation of the testes. According to Portmann , the descent of the testes was due to the evolution of the scrotum as a signal. However, both the sensibility of the extra-abdominal testes to temperature elevations and the optical effects of the scrotum can be interpreted as a consequence of testicular descent rather than as its cause. The hypothesis presented in this paper suggests a new adaptive explanation for the descent of the testes in mammals and regards its development as an example of evolutionary compromise. Obvious disadvantages such as reduced protection of the extra-abdominal testes, “perforation” of the inguinal abdominal wall, and an increased loss of heat from the body core have to be outbalanced by a strong selective advantage. This advantage is seen in the development of a completely new, fast mode of locomotion - the gallop. The strong flexions and extensions of the vertebral column during gallop should cause intense fluctuations of intra-abdominal pressure. Fluctuations of intra-abdominal pressure severely impede continuous flow of blood in the abdominal veins. Periodically reduced venous drainage resulting in fluctuations of intra-testicular pressure would impair the process of spermiohistogenesis, which is dependent on an absolutely constant pressure within the testis. Thus, it is the displacement of the pressure sensitive testes out of the abdominal cavity that allows for the evolution of a fast mode of locomotion accompanied by strong fluctuations of intraabdominal pressure. In the course of the phylogenetic translocation of the testes increasing specializations of the testicular blood vessels occur. In mammals possessing a scrotum the return flow of venous blood from the extra-abdominal testes to the abdominal cavity is supported by utilizing the energy of the arterial pulse (‘peripheral arterial pump’). A model for the successive stages of the descent of the testes is illustrated in Figures 7–10. The morphological changes related to the phylogenetic descent of the testes, such as the specialization of the testicular blood vessels, the forming of a cremasteric sack in the inguinal region, and the differentiation of the inguinal or perineal integument into a scrotum can all be interpreted as serving one purpose: they aid in maintaining a constant intra-testicular pressure in spite of increasing fluctuations of intra-abdominal pressure and venous blood flow during the evolution of the gallop. Although the blood vessels of the spermatic chord basically serve the same functions, they show markedly different specializations in Marsupials and Eutherians. This indicates that the descent of the testes has occurred independently, at least, in these two groups. The explanation put forward here postulates a causal relationship between the mode of locomotion and the position of the testes. Mammals possessing testes wnich reside permanently within the abdominal cavity (‘Testiconda’) cannot gallop, whereas mammals with the ability to gallop must have (periodical or permanent) extraabdominal testes (‘Testiphaena’).  相似文献   

14.
R. Mieusset 《Andrologie》1999,9(2):272-285
Non descended testes in the low scrotum is a common anomaly at birth, with about 4% of the newborn males affected. Only one quarter of these newborn babies will still have non descended testes when one year old. However, the testes that will descend within the first year of life seem no more to be considered as normally descended testes. Moreover, the retractile testis, which represents a secondary anomaly of testicular position occuring after the babies are older than one year, is no more to be regarded as a physiological variant of the normally descended testis, since several reports indicate histological and clinical modifications in such cases. The testicular non descent can be associated with two consequences in adult life. Firstly, an history of non descended testis is the only known risk factor for the testicular cancer. Secondly, such an history is a risk factor for the male fertility because of spermatogenesis alterations, as indicated by qualitative and quantitative histological analyses of the testicular tissue, and by depressed spermatozoa output and quality (motility, normal forms); moreover, testicular volumes are reduced, and the time to pregnancy as well as the rate of infertility are increased. Time is arrived for a reappraisal of the consequences in adult life of the abnormal testicular location (either congenital or acquired) during childhood.  相似文献   

15.
邻苯二甲酸二(2-乙基己基)酯(di-2-ethylhexylphthalate,DEHP)及氯氰菊酯(cypermethrin,CYP)是我国广泛存在的两种环境内分泌干扰物(environmental endocrine disruptors,EEDs),具有显著的抗雄激素活性及生殖毒性,可致雄性性腺发育不良.祖国传统医学认为,性腺发育不良属肾精亏虚、肾气不足,临床采用益肾填精中药治疗取得显著疗效,但其具体机制尚不清楚.本实验主要研究益肾填精中药拮抗EEDs——DEHP及CYP引致青春前期大鼠性腺发育不良的作用机制.实验中染毒组分别饲喂500 mg/kg DEHP,80 mg/kg CYP及500 mg/kg DEHP+80 mg/kg CYP,治疗组采用40 mg/kg益肾填精中药与相应染毒物质同时饲喂.研究结果显示,DEHP、CYP单独及联合染毒组的青春前期大鼠睾丸重量、睾丸系数及血清睾酮水平均显著下调;睾丸氧化应激指标MDA含量、GSH-Px活性明显上升;病理组织及超微结构显示睾丸形态萎缩;睾丸支持细胞功能相关的基因与蛋白表达均出现不同程度的下调.益肾填精中药治疗干预后,睾丸重量、睾丸系数及血清睾酮水平均显著增加并接近对照组水平;睾丸形态明显改善,细胞数量增加;睾丸氧化应激水平下降;实时荧光定量PCR及Western印迹显示睾丸支持细胞功能相关的基因与蛋白的表达水平显著上调.本研究证实,益肾填精中药对DEHP及CYP的抗雄激素活性及生殖毒性有显著拮抗作用,可明显拮抗染毒物质诱导的氧化应激作用,促进睾酮分泌,并改善睾丸支持细胞功能,这可能是益肾填精中药有效拮抗EEDs抗雄激素活性及其生殖毒性的主要作用机制之一.  相似文献   

16.
17.
46,XY pure gonadal dysgenesis, first described in 1955 by Swyer, results from testicular tissue loss during the first 8 weeks of fetal life, a critical period for male differentiation. We describe a case of an 18 years old patient presented to us with a chief complain of primary amenorrhea. Chromosomal analysis revealed a 46,XY karyotype. A molecular investigation was undertaken in an attempt to determine mutations in SRY and AR genes through DNA sequencing. Mutations were shown to be absent. The molecular basis of Swyer syndrome is still unknown, although the presence of mutations in testicular organizing genes downstream of SRY is still to rule out. The patient, who is considered as female, was placed on estrogen replacement therapy, while bilateral prophylactic laparoscopic gonadectomy was programmed due to the high prevalence of gonadal tumors in this syndrome. No signs of malignance were detected in the gonadal tissue, which predicts that an intact SRY gene is usually, but not always, not related to the formation of malignancies like dysgeminomas or gonadoblastomas.  相似文献   

18.
《Reproductive biology》2020,20(4):465-473
Di-(2-ethylhexyl) phthalate is representative of Phthalate esters (PAEs), which is one of the most widely used plasticizer and known to act as a reproductive toxicant. However, little is known about the toxicity and pathological process of DEHP exposure in male reproductive system in terms of different concentrations and time points. In this study, peripubertal male Sprague Dawley rats were continually exposed to different DEHP doses (100 mg/kg, 500 mg/kg, and 900 mg/kg) and periods (7 days, 14 days, 21 days, 28 days, and 35 days) during critical periods for sexual maturity. The reproductive parameters have been investigated, including testicular morphology, serum testosterone level, and testicular P450scc, 3β-HSD, and PCYP17 levels. We observed disarrangement of testicular spermatogenic epithelium coupled with decrease of serum testosterone, testicular P450scc, 3β-HSD, and PCYP17 levels, and these changes were more obvious with increase of both the exposure time and dosage. Then trend of the time-dose response to DEHP exposure and the pathological process in germ cells were estimated. The results of this study suggested that DEHP exposure could affect the male reproductive system and the degree of adverse effect depended on the dose and extent of exposure.  相似文献   

19.
A variety of so-called innocuous chemicals can have insidious and long lasting effects on the developing male reproductive system. Developmental exposures of male rabbits to common industrial contaminants in drinking water (a mixture of arsenic, chromium, lead, benzene, chloroform, phenol, and trichloroethylene); alkyl phenols (e.g. octylphenol); water disinfection by-products (e.g. dibromoacetic acid); anti-androgenic pesticides (e.g. p,p'-DDT and vinclozolin); and plasticizers (e.g. dibutyl phthalate) produce testicular dysgenesis. The lesions include testicular carcinoma in situ, also called intratubular germ cell neoplasia--the precursor lesion of germ cell tumors in men, and acrosomal dysgenesis--characterized by sharing of a dysplastic acrosome by two or more spermatids resulting in characteristic sperm acrosomal-nuclear malformations. Certain manifestations of testicular dysgenesis arch across environmental agents, and sequelae of intentional developmental exposures of rabbits duplicate what has been encountered in deer, horses, and humans for which the etiology is uncertain.  相似文献   

20.
This minireview considers the state of knowledge regarding the interactions of testicular hormones to regulate the secretion and actions of GnRH in males, with special focus on research conducted in rams and male rhesus monkeys. In these two species, LH secretion is under the negative feedback regulation of testicular steroids that act predominantly within the central nervous system to suppress GnRH secretion. The extent to which these actions of testicular steroids result from the direct actions of testosterone or its primary metabolites, estradiol or dihydrotestosterone, is unclear. Because GnRH neurons do not contain steroid receptors, the testicular steroids must influence GnRH neurons via afferent neurons, which are largely undefined. The feedback regulation of FSH is controlled by inhibin acting directly at the pituitary gland. In male rhesus monkeys, the feedback regulation of FSH secretion is accounted for totally by the physiologically relevant form of inhibin, which appears to be inhibin B. In rams, the feedback regulation of FSH secretion involves the actions of inhibin and testosterone and interactions between these hormones, but the physiologically relevant form of inhibin has not been determined. The mechanisms of action for inhibin are not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号