首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Raquel Assis 《Fly》2014,8(2):91-94
Gene duplication is thought to play a key role in phenotypic innovation. While several processes have been hypothesized to drive the retention and functional evolution of duplicate genes, their genomic contributions have never been determined. We recently developed the first genome-wide method to classify these processes by comparing distances between expression profiles of duplicate genes and their ancestral single-copy orthologs. Application of our approach to spatial gene expression profiles in two Drosophila species revealed that a majority of young duplicate genes possess new functions, and that new functions are acquired rapidly—often within a few million years. Surprisingly, new functions tend to arise in younger copies of duplicate gene pairs. Moreover, we found that young duplicates are often specifically expressed in testes, whereas old duplicates are broadly expressed across several tissues, providing strong support for the hypothetical “out-of-testes” origin of new genes. In this Extra View, I discuss our findings in the context of theoretical predictions about gene duplication, with a particular emphasis on the importance of natural selection in the evolution of novel phenotypes.  相似文献   

2.
    
How gene function evolves is a central question of evolutionary biology. It can be investigated by comparing functional genomics results between species and between genes. Most comparative studies of functional genomics have used pairwise comparisons. Yet it has been shown that this can provide biased results, as genes, like species, are phylogenetically related. Phylogenetic comparative methods should be used to correct for this, but they depend on strong assumptions, including unbiased tree estimates relative to the hypothesis being tested. Such methods have recently been used to test the “ortholog conjecture,” the hypothesis that functional evolution is faster in paralogs than in orthologs. Although pairwise comparisons of tissue specificity (τ) provided support for the ortholog conjecture, phylogenetic independent contrasts did not. Our reanalysis on the same gene trees identified problems with the time calibration of duplication nodes. We find that the gene trees used suffer from important biases, due to the inclusion of trees with no duplication nodes, to the relative age of speciations and duplications, to systematic differences in branch lengths, and to non-Brownian motion of tissue specificity on many trees. We find that incorrect implementation of phylogenetic method in empirical gene trees with duplications can be problematic. Controlling for biases allows successful use of phylogenetic methods to study the evolution of gene function and provides some support for the ortholog conjecture using three different phylogenetic approaches.  相似文献   

3.
《遗传》2024,47(2)
基因重复指基因组中一个基因通过多样化的分子机制从一个基因拷贝形成两个或多个重复拷贝的过程;是新基因起源的重要途径之一;对真核生物基因组贡献了约为一半的基因;也推动了物种的适应性演化。在过去50年中;特别是近20年进入组学时代以来;演化遗传学领域对于重复基因的产生机制、演化历程与演化动力展开了广泛而深入的讨论。一方面;重复基因的序列相似性带来的功能冗余使机体具有更强的稳健性;另一方面;重复基因的功能分歧带来了新功能与可演化性的提升。本文全面介绍了上述基因重复的机制、重复基因的命运及演化模型;最后展望了三代测序技术、基因编辑等各种高通量技术将进一步推动重复基因在遗传-发育-演化网络中角色的解析。  相似文献   

4.
Inferences about the evolutionary impact of gene duplications often rely on the analysis of their long-term outcome. The fate of the majority of them must, however, be decided shortly after duplication. Here we analysed the evolutionary pattern of 10 mouse genes very recently duplicated by retrotransposition, by sequencing the retroposed copy in five to 10 closely related mouse species. In all cases the retroposed copy experienced accelerated nonsynonymous evolution whereas the divergence pattern of the source copy appeared unaffected by the duplication, consistent with the neofunctionalization model. The analysis further revealed that most retrogenes, including pseudogenes, did not experience a period of relaxed neutral evolution, but have been submitted to purifying selection ever since their retroposition. We propose that these duplicates play a biochemical role but are not indispensable. Purifying selection prevents them from acquiring a negative role until they are lost or silenced. This period of unnecessary redundancy could in rare cases give the time for new functions to evolve.  相似文献   

5.
6.
7.
Diversity and disparity are unequally distributed both phylogenetically and geographically. This uneven distribution may be owing to differences in diversification rates between clades resulting from processes such as adaptive radiation. We examined the rate and distribution of evolution in feeding biomechanics in the extremely diverse and continentally distributed South American geophagine cichlids. Evolutionary patterns in multivariate functional morphospace were examined using a phylomorphospace approach, disparity-through-time analyses and by comparing Brownian motion (BM) and adaptive peak evolutionary models using maximum likelihood. The most species-rich and functionally disparate clade (CAS) expanded more efficiently in morphospace and evolved more rapidly compared with both BM expectations and its sister clade (GGD). Members of the CAS clade also exhibited an early burst in functional evolution that corresponds to the development of modern ecological roles and may have been related to the colonization of a novel adaptive peak characterized by fast oral jaw mechanics. Furthermore, reduced ecological opportunity following this early burst may have restricted functional evolution in the GGD clade, which is less species-rich and more ecologically specialized. Patterns of evolution in ecologically important functional traits are consistent with a pattern of adaptive radiation within the most diverse clade of Geophagini.  相似文献   

8.
Gene duplication and evolutionary novelty in plants   总被引:3,自引:0,他引:3  
Duplication is a prominent feature of plant genomic architecture. This has led many researchers to speculate that gene duplication may have played an important role in the evolution of phenotypic novelty within plants. Until recently, however, it was difficult to make this connection. We are now beginning to understand how duplication has contributed to adaptive evolution in plants. In this review we introduce the sources of gene duplication and predictions of the various fates of duplicates. We also highlight several recent and pertinent examples from the literature. These examples demonstrate the importance of the functional characteristics of genes and the source of duplication in influencing evolutionary outcome.  相似文献   

9.
The consumption of plants by animals underlies important evolutionary and ecological processes in nature. Arthropod herbivory evolved approximately 415 Ma and the ensuing coevolution between plants and herbivores is credited with generating much of the macroscopic diversity on the Earth. In contemporary ecosystems, herbivory provides the major conduit of energy from primary producers to consumers. Here, we show that when averaged across all major lineages of vascular plants, herbivores consume 5.3% of the leaf tissue produced annually by plants, whereas previous estimates are up to 3.8× higher. This result suggests that for many plant species, leaf herbivory may play a smaller role in energy and nutrient flow than currently thought. Comparative analyses of a diverse global sample of 1058 species across 2085 populations reveal that models of stabilizing selection best describe rates of leaf consumption, and that rates vary substantially within and among major plant lineages. A key determinant of this variation is plant growth form, where woody plant species experience 64% higher leaf herbivory than non-woody plants. Higher leaf herbivory in woody species supports a key prediction of the plant apparency theory. Our study provides insight into how a long history of coevolution has shaped the ecological and evolutionary relationships between plants and herbivores.  相似文献   

10.
Twist genes are essential for embryonic development and are conserved from jellyfish to human. To study the vertebrate twist family and its evolution, the entire complement of twist genes was obtained for 9 representative species. Phylogenetic analysis showed that a single protochordate twist gene was duplicated at least twice before the teleost-tetrapod split to give rise to 3 ancestral genes, which were further duplicated or deleted, resulting in fluctuating number of twist paralogs in different vertebrate lineages. To find whether changes in gene copy number were associated with changes in gene function, embryonic expression patterns of twist orthologs were evaluated against the number of twist paralogs in different species. The results showed evidence for both neo- and subfunctionalization, and, in addition, for loss of an ancestral regulatory gene. For example, in Xenopus, twist2 was lost, but the twist1 paralog acquired, and therefore preserved, twist2 function. A general model is proposed to explain the data. In this process, termed synfunctionalization, one paralog acquires the expression domain(s) of another. The merging may lead to function shuffle. Alternatively, it may leave one paralog redundant and thus subject to deletion--while its function is retained by the surviving paralog(s). Synfunctionalization is a mechanism that, together with neo- and subfunctionalization, may work to establish equilibrium in the number of genes that regulate developmental processes; it may regulate the complexity of regulatory regions as well as gene copy number and therefore may play a role in evolution of gene function and the structure of genome.  相似文献   

11.
What factors determine the extent of evolutionary diversification remains a major question in evolutionary biology. Behavioural changes have long been suggested to be a major driver of phenotypic diversification by exposing animals to new selective pressures. Nevertheless, the role of behaviour in evolution remains controversial because behavioural changes can also retard evolutionary change by hiding genetic variation from selection. In the present study, we apply recently implemented Ornstein–Uhlenbeck evolutionary models to show that behavioural changes led to associated evolutionary responses in functionally relevant morphological traits of pigeons and doves (Columbiformes). Specifically, changes from terrestrial to arboreal foraging behaviour reconstructed in a set of phylogenies brought associated shorter tarsi and longer tails, consistent with functional predictions. Interestingly, the transition to arboreality accelerated the rates of evolutionary divergence, leading to an increased morphological specialization that seems to have subsequently constrained reversals to terrestrial foraging. Altogether, our results support the view that behaviour may drive evolutionary diversification, but they also highlight that its evolutionary consequences largely depend on the limits imposed by the functional demands of the adaptive zone.  相似文献   

12.
Hydrophobins are small, secreted proteins that play important roles in the development of pathogenic and symbiotic fungi. Evolutionary mechanisms generating sequence and expression divergence among members in hydrophobin gene families are largely unknown. Seven hydrophobin (hyd) genes and one hyd pseudogene were isolated from strains of the ectomycorrhizal fungus Paxillus involutus. Sequences were analysed using phylogenetic methods. Expression profiles were inferred from microarray experiments. The hyd genes included both young (recently diverged) and old duplicates. Some young hyd genes exhibited an initial phase of enhanced sequence evolution owing to relaxed or positive selection. There was no significant association between sequence divergence and variation in expression levels. However, three hyd genes displayed a shift in the expression levels or an altered tissue specificity following duplication. The Paxillus hyd genes evolve according to the so-called birth-and-death model in which some duplicates are maintained for a long time, whereas others are inactivated through mutations. The role of subfunctionalization and/or neofunctionalization for preserving the hyd duplicates in the genome is discussed.  相似文献   

13.
The evolution and functional diversification of animal microRNA genes   总被引:2,自引:0,他引:2  
microRNAs (miRNAs) are an abundant class of-22 nucleotide (nt) regulatory RNAs that are pervasive in higher eukaryotic genomes. In order to fully understand their prominence in genomes, it is necessary to elucidate the molecular mechanisms that can diversify miRNA activities. In this review, we describe some of the many strategies that allow novel miRNA functions to emerge, with particular emphasis on how miRNA genes evolve in animals. These mechanisms include changes in their sequence, processing, or expression pattern; acquisition of miRNA^* functionality or antisense processing; and de novo gene birth. The facility and versatility of miRNAs to evolve and change likely underlies how they have become dominant constituents of higher genomes.  相似文献   

14.
15.
Although the role of lateral gene transfer is well recognized in the evolution of bacteria, it is generally assumed that it has had less influence among eukaryotes. To explore this hypothesis, we compare the dynamics of genome evolution in two groups of organisms: cyanobacteria and fungi. Ancestral genomes are inferred in both clades using two types of methods: first, Count, a gene tree unaware method that models gene duplications, gains and losses to explain the observed numbers of genes present in a genome; second, ALE, a more recent gene tree-aware method that reconciles gene trees with a species tree using a model of gene duplication, loss and transfer. We compare their merits and their ability to quantify the role of transfers, and assess the impact of taxonomic sampling on their inferences. We present what we believe is compelling evidence that gene transfer plays a significant role in the evolution of fungi.  相似文献   

16.
Population-genetic models of the fates of duplicate genes   总被引:16,自引:0,他引:16  
Walsh B 《Genetica》2003,118(2-3):279-294
The ultimate fate of a duplicated gene is that it either silenced through inactivating mutations or both copies are maintained by selection. This later fate can occur via neofunctionalization wherein one copy acquires a new function or by subfunctionalization wherein the original function of the gene is partitioned across both copies. The relative probabilities of these three different fates involve often very subtle iterations between of population size, mutation rate, and selection. All three of these fates are critical to the expansion and diversification of gene families.  相似文献   

17.
    
The way in which a complex trait varies, and thus evolves, is critically affected by the independence, or modularity, of its subunits. How modular designs facilitate phenotypic diversification is well studied in nonornamental (e.g., cichlid jaws), but not ornamental traits. Diverse feather colors in birds are produced by light absorption by pigments and/or light scattering by nanostructures. Such structural colors are deterministically related to the nanostructures that produce them and are therefore excellent systems to study modularity and diversity of ornamental traits. Elucidating if and how these nanostructures facilitate color diversity relies on understanding how nanostructural traits covary, and how these traits map to color. Both of these remain unknown in an evolutionary context. Most dabbling ducks (Anatidae) have a conspicuous wing patch with iridescent color caused by a two‐dimensional photonic crystal of small (100–200 nm) melanosomes. Here, we ask how this complex nanostructure affects modularity of color attributes. Using a combination of electron microscopy, spectrophotometry, and comparative methods, we show that nanostructural complexity causes functional decoupling and enables independent evolution of different color traits. These results demonstrate that color diversity is facilitated by how nanostructures function and may explain why some birds are more color‐diverse than others.  相似文献   

18.
We have examined the effects of current and conductance noise in a single-neuron model which can generate a variety of physiologically important impulse patterns. Current noise enters the membrane equation directly while conductance noise is propagated through the activation variables. Additive Gaussian white noise which is implemented as conductance noise appears in the voltage equations as an additive and a multiplicative term. Moreover, the originally white noise is turned into colored noise. The noise correlation time is a function of the system's control parameters which may explain the different effects of current and conductance noise in different dynamic states. We have found the most significant, qualitative differences between different noise implementations in a pacemaker-like, tonic firing regime at the transition to chaotic burst discharges. This reflects a dynamic state of high physiological relevance.  相似文献   

19.
    
The aim of this paper is to explore the phenomenon of aperiodic stochastic resonance in neural systems with colored noise. For nonlinear dynamical systems driven by Gaussian colored noise, we prove that the stochastic sample trajectory can converge to the corresponding deterministic trajectory as noise intensity tends to zero in mean square, under global and local Lipschitz conditions, respectively. Then, following forbidden interval theorem we predict the phenomenon of aperiodic stochastic resonance in bistable and excitable neural systems. Two neuron models are further used to verify the theoretical prediction. Moreover, we disclose the phenomenon of aperiodic stochastic resonance induced by correlation time and this finding suggests that adjusting noise correlation might be a biologically more plausible mechanism in neural signal processing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号