首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Streptococcus pneumoniae (pneumococcus), the causative agent of several human diseases, possesses numerous virulence factors associated with pneumococcal infection and pathogenesis. Pneumolysin (PLY), an important virulence factor, is a member of the cholesterol‐dependent cytolysin family and has cytolytic activity. Sortase A (SrtA), another crucial pneumococcal virulence determinate, contributes greatly to the anchoring of many virulence‐associated surface proteins to the cell wall. In this study, epigallocatechin gallate (EGCG), a natural compound with little known antipneumococcal activity, was shown to directly inhibit PLY‐mediated haemolysis and cytolysis by blocking the oligomerization of PLY and simultaneously reduce the peptidase activity of SrtA. The biofilm formation, production of neuraminidase A (NanA, the pneumococcal surface protein anchored by SrtA), and bacterial adhesion to human epithelial cells (Hep2) were inhibited effectively when S. pneumoniae D39 was cocultured with EGCG. The results from molecular dynamics simulations and mutational analysis confirmed the interaction of EGCG with PLY and SrtA, and EGCG binds to Glu277, Tyr358, and Arg359 in PLY and Thr169, Lys171, and Phe239 in SrtA. In vivo studies further demonstrated that EGCG protected mice against S. pneumoniae pneumonia. Our results imply that EGCG is an effective inhibitor of both PLY and SrtA and that an antivirulence strategy that directly targets PLY and SrtA using EGCG is a promising therapeutic option for S. pneumoniae pneumonia.  相似文献   

3.
The 7-valent polysaccharide conjugate vaccine currently administered against Streptococcus pneumoniae has been shown to be highly effective in high risk-groups, but its use in developing countries will probably not be possible due to high costs. The use of conserved protein antigens using the genetic vaccination strategy is an interesting alternative for the development of a cost-effective vaccine. We have analyzed the potential of DNA vaccines expressing genetically detoxified derivatives of pneumolysin (pneumolysoids) against pneumococcal infections, and compared this with immunization using recombinant protein. The purified recombinant pneumolysoid with the highest residual cytolytic activity was able to confer partial protection against a lethal intraperitoneal challenge, with the induction of high antibody levels. Immunization with DNA vaccines expressing pneumolysoids, on the other hand, induced a significantly lower antibody response and no protection was observed.  相似文献   

4.
目的使用重叠PCR方法构建构建△Al46Ply突变体,原核可溶性表达△Al46Ply蛋白,并明确其毒力变化情况;分析肺炎链球菌溶血素(pneumolysin,Ply)在不同血清型肺炎链球菌(streptococcus pneumoniae,SPN)中的表达情况。方法以SPND39型基因组DNA为模板设计合成构建突变体pry基因所需引物;利用重叠PCR方法扩增合成△Al46ply突变体。通过溶血实验分析其溶血活性,利用中和试验验证△A146Ply诱导产生的特异性抗体中和野生Ply毒素溶血能力,并利用Western印迹检测5株不同血清型肺炎链球菌流行菌株中Ply蛋白表达情况。结果突变体基因测序结果显示,Plyl46位密码子GCT3个碱基被缺失,△Al46ply突变体构建成功,并实现了△Al46Ply的可溶性表达,得到纯度〉90%的重组蛋白。△A146Ply蛋白浓度为100000ng/ml亦未表现出溶血活性。△Al46Ply蛋白诱导产生的特异性抗体能够中和野生Ply毒素的溶血活性。Western印迹结果显示,△Al46Ply诱导产生的多克隆抗体可与国内临床常见4株肺炎链球菌有交叉反应。结论△Al46Ply蛋白是一种安全的肺炎链球菌疫苗候选分子,可刺激机体产生具有中和作用的特异性抗体。  相似文献   

5.
6.
Sortase A (SrtA) is required to anchor neuraminidase, beta-galactosidase, and possibly other LPXTG motif proteins to the pneumococcal cell surface. We examined the role of SrtA in Streptococcus pneumoniae nasopharyngeal (NP) colonization in the chinchilla model. The srtA mutant colonized the nasopharynx at a significantly lower level than the D39 parent strain during the second and third week of the carriage, and was eliminated from nasopharynx one week earlier than the D39 pneumococci. Our data indicate that SrtA contributes to pneumococcal NP colonization in this animal model.  相似文献   

7.
Background Nasopharyngeal colonization by Streptococcus pneumoniae precedes pneumococcal disease. Elucidation of procedures to prevent or eradicate nasopharyngeal carriage in a model akin to the human would help to diminish the incidence of both pneumonia and invasive pneumococcal disease. Methods We conducted a survey of the nasopharynx of infant rhesus macaques from our breeding colony, in search of natural carriers of S. pneumoniae. We also attempted experimental induction of colonization, by nasopharyngeal instillation of a human S. pneumoniae strain (19F). Results None of 158 colony animals surveyed carried S. pneumoniae in the nasopharynx. Colonization was induced in eight of eight infant rhesus by nasopharyngeal instillation and lasted 2 weeks in 100% of the animals and 7 weeks in more than 60%. Conclusion Rhesus macaques are probably not natural carriers of S. pneumoniae. The high rate and duration of colonization obtained in our experiments indicates that the rhesus macaque will serve as a human‐like carriage model.  相似文献   

8.
目的 建立环介导恒温扩增(LAMP)检测肺炎链球菌的方法.方法 用LAMP技术扩增肺炎链球菌菌株,并应用50例临床标本采用传统培养法、PCR法、LAMP法进行检测,比较3种方法的检出率,同时检测方法特异性和灵敏度.结果 所测肺炎链球菌均获扩增产物,对其他非肺炎链球菌无交叉反应.LAMP检测灵敏度可达102 CFU/mL.50例临床标本使用LAMP法检出9例肺炎链球菌阳性(18.0%),使用传统培养法检出阳性4例(8.0%).结论 LAMP法较传统培养检测方法特异性强、灵敏度高、操作方便、快速,适合临床标本的肺炎链球菌检测.  相似文献   

9.
Streptococcus pneumoniae causes considerable morbidity and mortality throughout the world. Iron acquisition is an important virulence factor for bacterial pathogens. Two loci, piu and pia, were identified as responsible for the hemoglobin utilization of S. pneumoniae. The binding activity and surface accessibility of the solute binding protein of PiuA were studied. PiuA is a lipoprotein, binds hemin and hemoglobin, resides on the cytoplasmic membrane, and is not exposed on the surface of S. pneumoniae. The localization of PiuA has implications in its role in hemoglobin utilization and possible use as a pneumococcal vaccine.  相似文献   

10.
【目的】研究锌离子缺乏对肺炎链球菌的影响,找到其适应性生长机制。【方法】以肺炎链球菌为模型,利用加锌和不加锌的培养基对细菌进行培养,收集细胞蛋白,采用双向凝胶电泳,结合金属亲和层析和质谱技术鉴定差异表达蛋白,进而通过生物信息学分析蛋白质相互关系,从中找到细菌适应锌离子匮乏条件的关键代谢通路和蛋白。【结果】测定了在限制培养条件下肺炎链球菌的最适生长浓度,建立了锌离子调控蛋白双向凝胶电泳图谱,鉴定到了96个差异表达蛋白斑点,共67个差异蛋白,其中32个表达下调,35个表达上调,锌离子调控蛋白的作用可能主要体现在糖代谢、核酸代谢、氧化还原作用、辅助蛋白质翻译、合成及折叠等方面。建立了锌结合蛋白的差异表达图谱,鉴定到了10个差异表达蛋白斑点,共7个差异蛋白,其中1个表达下调,6个表达上调。锌离子结合蛋白的作用可能主要体现在应对压力、蛋白质折叠和转运、氨基酸代谢等方面。【结论】肺炎链球菌主要通过调控碳水化合物代谢和核酸代谢等多个代谢通路来应对宿主锌金属离子匮乏的环境,从而使自身能够存活并对宿主形成感染。本研究为揭示细菌在宿主环境,特别是金属离子匮乏条件下的适应性生长机制提供理论基础。  相似文献   

11.
Sortases are a group of enzymes displayed on the cell-wall of Gram-positive bacteria. They are responsible for the attachment of virulence factors onto the peptidoglycan in a transpeptidation reaction through recognition of a pentapeptide substrate. Most housekeeping sortases recognize one specific pentapeptide motif; however, Streptococcus pyogenes sortase A (SpSrtA WT) recognizes LPETG, LPETA and LPKLG motifs. Here, we examined SpSrtA's flexible substrate specificity by investigating the role of the β7/β8 loop in determining substrate specificity. We exchanged the β7/β8 loop in SpSrtA with corresponding β7/β8 loops from Staphylococcus aureus (SaSrtA WT) and Bacillus anthracis (BaSrtA WT). While the BaSrtA-derived variant showed no enzymatic activity toward either LPETG or LPETA substrates, the activity of the SaSrtA-derived mutant toward the LPETA substrate was completely abolished. Instead, the mutant had an improved activity toward LPETG, the preferred substrate of SaSrtA WT.  相似文献   

12.
Novel vaccine strategies with protein antigens of Streptococcus pneumoniae   总被引:5,自引:0,他引:5  
Infections caused by Streptococcus pneumoniae (pneumococcus) are a major cause of mortality throughout the world. This organism is primarily a commensal in the upper respiratory tract of humans, but can cause pneumonia in high-risk persons and disseminate from the lungs by invasion of the bloodstream. Currently, prevention of pneumococcal infections is by immunization with vaccines which contain capsular polysaccharides from the most common serotypes causing invasive disease. However, there are more than 90 antigenically distinct serotypes and there is concern that serotypes not included in the vaccines may become more prevalent in the face of continued use of polysaccharide vaccines. Also, certain high-risk groups have poor immunological responses to some of the polysaccharides in the vaccine formulations. Protein antigens that are conserved across all capsular serotypes would induce more effective and durable humoral immune responses and could potentially protect against all clinically relevant pneumococcal capsular types. This review provides a summary of work on pneumococcal proteins that are being investigated as components for future generations of improved pneumococcal vaccines.  相似文献   

13.
肺炎链球菌转化模型的建立与优化   总被引:1,自引:0,他引:1  
建立肺炎链球菌转化模型,优化转化体系,提高转化率,以便于进一步研究其致病的分子机制。制备肺炎链球菌感受态,首先在不同菌密度下转化外源DNA,计数抗生素筛选平板上的转化菌落,比较其转化率,确定转化的最适菌密度;然后在此菌密度下比较CSP诱导不同时相的转化率,同时用RT-PCR检测感受态调控基因comE的表达。对所用血清3型菌株而言转化的最适菌密度在OD550=0.09~0.10之间;CSP-2诱导10 min后转化率最高,可达(15.6±3)%;comE的表达也在CSP-2诱导10 min后达到最高。在实验室条件下,肺炎链球菌转化受多种因素的影响,必需控制好各种因素,选择最优条件才能获得稳定、高效的转化。  相似文献   

14.
目的 探讨MALDI-TOF MS对肺炎链球菌鉴定和质谱分型的应用价值。方法 收集2009年1月至2013年5月温州医科大学附属第二医院临床分离的112株肺炎链球菌标本,采用Optochin敏感试验和全自动细菌分析仪对收集的菌株进行鉴定验证,并用Microflex MALDI-TOF质谱仪进行分析鉴定。根据质谱图的相似性进行细菌同源聚类树分析并构建质谱分型模型,采用荚膜肿胀试验对参与分型的菌株进行血清型比较。结果 除20株不符合检测条件之外,92株临床菌株和1株标准株经质谱分析均为肺炎链球菌,选取的60株菌株以0.5的差异水平,将60株肺炎链球菌分为18个质谱型别,在这些菌株的血清分型中有19F、19A、23F、23A、3和14六个血清型别,分布于不同的MALDI-TOF MS分型中,其中19F有18株,占30%(18/60),分布在6种不同的MALDI-TOF MS分型中,也有3型血清型较为集中地分布于相应的MALDI-TOF MS一个型别里。结论 MALDI-TOF MS能快速、准确、简便地鉴定肺炎链球菌,且能达到种的水平。对比血清型,按照0.5差异水平,建立的18个质谱分型部分的型别与血清型有一致性,但也存有差异。  相似文献   

15.
应用差异蛋白质组学的方法,对肺炎链球菌D39在左氧氟沙星作用下蛋白质表达水平的变化进行了研究,利用质谱技术共鉴定到23个差异蛋白质。这些蛋白质主要参与DNA的复制、转录以及蛋白质的翻译过程,为深入了解抗生素的作用机理以及细菌的耐药机制提供重要理论基础。  相似文献   

16.
【背景】YycFG双组分系统是肺炎链球菌(Streptococcus pneumoniae,S. pn)应对外界环境的重要信息传递系统,其中表达反应调节子YycF的编码基因是肺炎链球菌生长的必需基因,但其是否调控细菌毒力尚不清楚。【目的】构建肺炎链球菌pcsB组成型表达及yycF缺陷菌,分析YycF对肺炎链球菌生物学特征和毒力的影响。【方法】采用Janus cassette (JC)反选的方法构建pcsB组成型表达菌株(Pc-PcsB~+),从该菌株出发用替代失活的方法构建yycF缺陷菌株(Pc-PcsB~+DyycF),比较野生株D39rpsl41、pcsB组成型表达株及yycF缺陷株的生长特性、荚膜多糖(capsular polysaccharide,CPS)含量、粘附侵袭能力和致病性的差异。【结果】成功构建pcsB组成型表达的yycF缺陷菌株(Pc-PcsB+DyycF);yycF缺陷导致细菌生长缓慢、分裂异常、胞内荚膜多糖和小分子荚膜多糖增多;体外实验结果显示,yycF缺陷菌株粘附能力较Pc-PcsB~+菌株减弱(P=0.006)。体内毒力实验显示,感染野生菌的小鼠全部死亡,感染Pc-PcsB+和Pc-PcsB~+DyycF菌株的小鼠死亡率分别为91.7%、75%,二者没有统计学差异(P=0.183),但Pc-PcsB~+DyycF菌株感染组有降低趋势;定殖结果显示,yycF缺陷菌株感染组的肺匀浆菌载量显著低于对照组(P=0.033)。【结论】成功构建yycF缺陷菌株,并初步证明yycF基因会影响肺炎链球菌的生物性状和致病能力,为后续探讨YycFG双组分系统对肺炎链球菌致病能力调控机制的研究奠定了基础。  相似文献   

17.
The pneumococcal choline-containing teichoic acids are targeted by choline-binding proteins (CBPs), major surface components implicated in the interaction with host cells and bacterial cell physiology. CBPs also occur in closely related commensal species, Streptococcus oralis and Streptococcus mitis , and many strains of these species contain choline in their cell wall. Physiologically relevant CBPs including cell wall lytic enzymes are highly conserved between Streptococcus pneumoniae and S. mitis . In contrast, the virulence-associated CBPs, CbpA, PspA and PcpA, are S. pneumoniae specific and are thus relevant for the characteristic properties of this species.  相似文献   

18.
Pili are fibrous appendages expressed on the surface of a vast number of bacterial species, and their role in surface adhesion is important for processes such as infection, colonization, andbiofilm formation. The human pathogen Streptococcus pneumoniae expresses two different types of pili, PI-1 and PI-2, both of which require the concerted action of structural proteins and sortases for their polymerization. The type PI-1 streptococcal pilus is a complex, well studied structure, but the PI-2 type, present in a number of invasive pneumococcal serotypes, has to date remained less well understood. The PI-2 pilus consists of repeated units of a single protein, PitB, whose covalent association is catalyzed by cognate sortase SrtG-1 and partner protein SipA. Here we report the high resolution crystal structures of PitB and SrtG1 and use molecular modeling to visualize a “trapped” 1:1 complex between the two molecules. X-ray crystallography and electron microscopy reveal that the pneumococcal PI-2 backbone fiber is formed by PitB monomers associated in head-to-tail fashion and that short, flexible fibers can be formed even in the absence of coadjuvant proteins. These observations, obtained with a simple pilus biosynthetic system, are likely to be applicable to other fiber formation processes in a variety of Gram-positive organisms.  相似文献   

19.
Streptococcus pneumoniae strain JNR.7/87 is a highly virulent, type 4 encapsulated Gram-positive bacterium whose transformability has not been tested previously, and whose genome is currently being sequenced. The strain was transformed at very low efficiency by addition of exogenous competence-stimulating peptide: However, the efficiency was too low and irreproducible to be useful in many genetic studies. Therefore, the effects on transformation efficiency of changing different components of competence-stimulating peptide-induced transformation have been examined. Screening of growth media was followed by optimization of pre-induction culture acidification, glycine concentration, and induction time. An optimized protocol was developed whereby S. pneumoniae strain JNR.7/87 was transformed reproducibly with a streptomycin resistance (SmR) marker at an efficiency of approximately 10(5) colony forming units per 10(8) cells.  相似文献   

20.
Abstract An internal fragment from each of the penicillinebinding protein (PBP) 1A, 2B and 2X genes of Streptococcus pneumoniae , which included the region encoding the active-site serine residue, was replaced by a fragment encoding spectinomycin resistance. The resulting constructs were tested for their ability to transform S. pneumoniae strain R6 to spectinomycin resistance. Spectinomycin-resistant transformants could not be obtained using either the inactivated PBP 2X or 2B genes, suggesting that deletion of either of these genes was a lethal event, but they were readily obtained using the inactivated PBP 1A gene. Analysis using the polymerase chain reaction confirmed that the latter transformants had replaced their chromosomal copy of the PBP 1A gene with the inactivated copy of the gene. Deletion of the PBP 1A gene was therefore tolerated under laboratory conditions and appeared to have little effect on growth or susceptibility to benzylpenicillin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号