首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Vascular calcification is a prominent feature of many diseases, including atherosclerosis, and it has emerged as a powerful predictor of cardiovascular morbidity and mortality. A number of studies have examined the association between selenium and risk of cardiovascular diseases, but little is known about the role of selenium in vascular calcification. To determine the role of selenium in regulating vascular calcification, we assessed the effect of sodium selenite on oxidative-stress-enhanced vascular smooth muscle cell (VSMC) calcification and the underlying mechanism. Oxidative stress induced by xanthine/xanthine oxidase increased apoptosis, as determined by Hoechst 33342 staining and annexin V/propidium iodide staining, and it enhanced osteoblastic differentiation and calcification of VSMCs, on the basis of alkaline phosphatase activity, the expression of Runx2 and type I collagen, and calcium deposition. These effects of oxidative stress were significantly inhibited by selenite. The following processes may explain the inhibitory effects of selenite: (1) selenite significantly suppressed oxidative stress, as evidenced by the decrease of the oxidative status of the cell and lipid peroxidation levels, as well as by the increase of the total protein thiol content and the activity of the antioxidant selenoenzyme glutathione peroxidase; (2) selenite significantly attenuated oxidative-stress-induced activation of the phosphatidylinositol 3-kinase/AKT and extracellular-signal-regulated kinase signaling pathways, resulting in decreased osteoblastic differentiation of VSMCs; (3) selenite significantly inhibited oxidative-stress-activated endoplasmic reticulum stress, thereby leading to decreased apoptosis. Our results suggest a potential role of selenium in the prevention of vascular calcification, which may provide more mechanistic insights into the relationship between selenium and cardiovascular diseases.  相似文献   

3.
Inflammation is a complicated biological process in response to harmful stimuli, which involves the cooperation of immune system and vascular system. Upon pathogen invasion or tissue injury, resident innate immune cells such as macrophages and dendritic cells are activated and release inflammatory mediators, which result in the vasodilation and recruitment of leukocytes, mainly monocytes and neutrophils. As two of the most important inflammation-mediating immune cells, macrophages and neutrophils have long been regarded to have a pro-inflammatory effect. However, increasing evidences suggest the role of macrophage and neutrophil in inflammation is more complicated and diversified than we thought. Differently activated macrophages and neutrophils lead to diverse even opposite activities. Precise understanding of the role of different subpopulations is critical to achieve the effective treatment for inflammatory diseases. In this review, we discuss the two potentially distinct activation routes of macrophages and neutrophils in obesity and diabetes.  相似文献   

4.
The classical pathway of complement is crucial to the immune system, but it also contributes to inflammatory diseases when dysregulated. Binding of the C1 complex to ligands activates the pathway by inducing autoactivation of associated C1r, after which C1r activates C1s. C1s cleaves complement component C4 and then C2 to cause full activation of the system. The interaction between C1s and C4 involves active site and exosite-mediated events, but the molecular details are unknown. In this study, we identified four positively charged amino acids on the serine protease domain that appear to form a catalytic exosite that is required for efficient cleavage of C4. These residues are coincidentally involved in coordinating a sulfate ion in the crystal structure of the protease. Together with other evidence, this pointed to the involvement of sulfate ions in the interaction with the C4 substrate, and we showed that the protease interacts with a peptide from C4 containing three sulfotyrosine residues. We present a molecular model for the interaction between C1s and C4 that provides support for the above data and poses questions for future research into this aspect of complement activation.  相似文献   

5.
Vascular calcification is common in chronic kidney disease (CKD) and contributes to cardiovascular disease (CVD) without any effective therapies available up to date. The expression of soluble epoxide hydrolase (sEH) is different in patients with and without vascular calcification. The present study investigates the role of sEH as a potential mediator of vascular calcification in CKD. Both Ephx2/− and wild-type (WT) mice fed with high adenine and phosphate (AP) diet were used to explore the vascular calcification in CKD. Compared with WT, deletion of sEH inhibited vascular calcification induced by AP. sEH deletion also abolished high phosphorus (Pi)-induced phenotypic transition of vascular smooth muscle cells (VSMCs) independent of its epoxyeicosatrienoic acids (EETs) hydrolysis. Further gene expression analysis identified the potential role of Sirtuin 3 (Sirt3) in the sEH-regulated VSMC calcification. Under high Pi treatment, sEH interacted with Sirt3, which might destabilize Sirt3 and accelerate the degradation of Sirt3. Deletion of sEH may preserve the expression of Sirt3, and thus maintain the mitochondrial adenosine triphosphate (ATP) synthesis and morphology, significantly suppressing VSMC calcification. Our data supported that sEH deletion inhibited vascular calcification and indicated a promising target of sEH inhibition in vascular calcification prevention.Subject terms: Chronic kidney disease, Calcification  相似文献   

6.
The complement system is an essential element of the innate immune response that becomes activated upon recognition of molecular patterns associated with microorganisms, abnormal host cells, and modified molecules in the extracellular environment. The resulting proteolytic cascade tags the complement activator for elimination and elicits a pro‐inflammatory response leading to recruitment and activation of immune cells from both the innate and adaptive branches of the immune system. Through these activities, complement functions in the first line of defense against pathogens but also contributes significantly to the maintenance of homeostasis and prevention of autoimmunity. Activation of complement and the subsequent biological responses occur primarily in the extracellular environment. However, recent studies have demonstrated autocrine signaling by complement activation in intracellular vesicles, while the presence of a cytoplasmic receptor serves to detect complement‐opsonized intracellular pathogens. Furthermore, breakthroughs in both functional and structural studies now make it possible to describe many of the intricate molecular mechanisms underlying complement activation and the subsequent downstream events, as well as its cross talk with, for example, signaling pathways, the coagulation system, and adaptive immunity. We present an integrated and updated view of complement based on structural and functional data and describe the new roles attributed to complement. Finally, we discuss how the structural and mechanistic understanding of the complement system rationalizes the genetic defects conferring uncontrolled activation or other undesirable effects of complement.  相似文献   

7.
Complement activation is an important component of the innate immune response against viral infection and also shapes adaptive immune responses. Despite compelling evidence that complement activation enhances T cell and antibody (Ab) responses during viral infection, it is unknown whether inhibition of complement by pathogens alters these responses. Vaccinia virus (VACV) modulates complement activation by encoding a complement regulatory protein called the vaccinia virus complement control protein (VCP). Although VCP has been described as a virulence factor, the mechanisms by which VCP enhances VACV pathogenesis have not been fully defined. Since complement is necessary for optimal adaptive immune responses to several viruses, we hypothesized that VCP contributes to pathogenesis by modulating anti-VACV T cell and Ab responses. In this study, we used an intradermal model of VACV infection to compare pathogenesis of wild-type virus (vv-VCPwt) and a virus lacking VCP (vv-VCPko). vv-VCPko formed smaller lesions in wild-type mice but not in complement-deficient mice. Attenuation of vv-VCPko correlated with increased accumulation of T cells at the site of infection, enhanced neutralizing antibody responses, and reduced viral titers. Importantly, depleting CD8(+) T cells together with CD4(+) T cells, which also eliminated T helper cell-dependent Ab responses, restored vv-VCPko to wild-type levels of virulence. These results suggest that VCP contributes to virulence by dampening both antibody and T cell responses. This work provides insight into how modulation of complement by poxviruses contributes to virulence and demonstrates that a pathogen-encoded complement regulatory protein can modulate adaptive immunity.  相似文献   

8.
Atherosclerotic vascular calcification contributes to increased risk of death in patients with cardiovascular diseases. Assessing the type and severity of inflammation is crucial in the treatment of numerous cardiovascular conditions. IL-1β, a potent proinflammatory cytokine, plays diverse roles in the pathogenesis of atherosclerotic vascular calcification. Several large-scale, population cohort trials have shown that the incidence of cardiovascular events is clinically reduced by the administration of anti-IL-1β therapy. Anti-IL-1β therapy might reduce the incidence of cardiovascular events by affecting atherosclerotic vascular calcification, but the mechanism underlying this effect remains unclear. In this review, we summarize current knowledge on the role of IL-1β in atherosclerotic vascular calcification, and describe the latest results reported in clinical trials evaluating anti-IL-1β therapies for the treatment of cardiovascular diseases. This review will aid in improving current understanding of the pathophysiological roles of IL-1β and mechanisms underlying its activity.  相似文献   

9.
Recent advances on the complement system of teleost fish   总被引:10,自引:0,他引:10  
The complement system plays an essential role in alerting the host of the presence of potential pathogens, as well as in their clearing. In addition, activation of the complement system contributes significantly in the orchestration and development of an acquired immune response. Although the complement system has been studied extensively in mammals, considerably less is known about complement in lower vertebrates, in particular teleost fish. Here we review our current understanding of the role of fish complement in phagocytosis, respiratory burst, chemotaxis and cell lysis. We also thoroughly review the specific complement components characterized thus far in various teleost fish species. In addition, we provide a comprehensive compilation on complement host-pathogen interactions, in which we analyze the role of fish complement in host defense against bacteria, viruses, fungi and parasites. From a more physiological perspective, we evaluate the knowledge accumulated on the influence of stress, nutrition and environmental factors on levels of complement activity and components, and how the use of this knowledge can benefit the aquaculture industry. Finally, we propose future directions that are likely to advance our understanding of the molecular evolution, structure and function of complement proteins in teleosts. Such studies will be pivotal in providing new insights into complement-related mechanisms of recognition and defense that are essential to maintaining fish homeostasis.  相似文献   

10.
Vascular calcification due to elevated phosphate levels is the major contributor of cardiovascular dysfunction. The oxidative stress and gene expression events modulate the transdifferentiation of vascular smooth muscle cells into osteogenic phenotype. This present study intends to evaluate the dose-dependent effect of diosgenin, an antioxidant on high phosphate induced vascular calcification in adenine-induced chronic renal failure rats. High phosphate environment causes elevated calcium accumulation with related histological changes and alkaline phosphatase activity in aorta. Further it downregulates the activity of enzymatic antioxidants and elevates the level of lipid peroxidative markers. Moreover, the renal failure leads to reduced nitric oxide production. But, treatment with diosgenin at a dose of 10, 20, and 40 mg/kg given via oral gavages causes reversion of all the above events in a dose-dependent manner. The highest dose has shown more potential activity than other two doses, which has the ability to protect the alteration of liver markers and red blood cell antioxidant system without any adverse effects and it does not alter the kidney associated changes too. Finally, the Fourier transform infrared spectroscopy study strongly supports its ability to protect the macromolecules from oxidative stress. All the above evidences show that diosgenin has overall benefits against renal failure-induced vascular calcification-associated oxidative stress.  相似文献   

11.
The inflammatory response to bacterial infection is the result of a complex interplay between bacterial products and host effector systems, such as the immune and complement systems. Here we show that Escherichia coli bacteria expressing fibrous surface proteins, known as curli, assemble and activate factors of the human coagulation cascade at their surface. As a result of this interaction, fibrinogen is converted to fibrin and fibrinogen-derived peptides, termed fibrinopeptides, are generated. The molecular mechanisms behind the bacteria-induced formation of fibrinopeptides were investigated and shown to be triggered by the activation of the contact system, also known as the kallikrein/kinin system or the intrinsic pathway of coagulation. Samples containing fibrinopeptides generated by the interaction between bacteria and plasma were injected into animals and the inflammatory response was monitored. We found that this treatment provoked an infiltration of white blood cells, and the induction of the proinflammatory cytokine MCP-1 at the inflamed site. Our results therefore demonstrate that activation of the coagulation system at the bacterial surface contributes to the pathophysiology of bacterial infectious diseases.  相似文献   

12.
The regulation of vascular tone, vascular permeability, and thromboresistance is essential to maintain blood circulation and therefore tissue environments under physiological conditions. Atherogenic stimuli, including diabetes, dyslipidemia, and oxidative stress, induce vascular dysfunction, leading to atherosclerosis, which is a key pathological basis for cardiovascular diseases such as ischemic heart disease and stroke. We have proposed a novel concept termed "vascular failure" to comprehensively recognize the vascular dysfunction that contributes to the development of cardiovascular diseases. Vascular endothelial cells form the vascular endothelium as a monolayer that covers the vascular lumen and serves as an interface between circulating blood and immune cells. Endothelial cells regulate vascular function in collaboration with smooth muscle cells. Endothelial dysfunction under pathophysiological conditions contributes to the development of vascular dysfunction. Here, we address the barrier function and microtubule function of endothelial cells. Endothelial barrier function, mediated by cell-to-cell junctions between endothelial cells, is regulated by small GTPases and kinases. Microtubule function, regulated by the acetylation of tubulin, a component of the microtubules, is a target of atherogenic stimuli. The elucidation of the molecular mechanisms of endothelial dysfunction as a cellular mechanism for vascular failure could provide novel therapeutic targets of cardiovascular diseases.  相似文献   

13.
14.
In addition to their well-recognized role in immune defense, there is a growing recognition that the proteins of the complement system impact directly on vascular homeostatic mechanisms, evoking cellular responses that serve to both promote adherence of blood cells to the walls of blood vessels, and the formation of fibrin through the enzyme mechanisms of the coagulation system. This clot-promoting or ‘procoagulant’ activity initiated through the complement system entails both receptor-mediated as well as receptor-independent pathways of cell activation. In this review, I will focus specifically upon the role that is now thought to be played by the membrane attack complex of the complement system (MAC) in the induction of the procoagulant properties of human platelets and endothelium.  相似文献   

15.
内质网应激(endoplasmic reticulum stress,ERs)是内质网腔内错误折叠蛋白聚积的一种适应性反应,适度ERs通过激活未折叠蛋白反应起适应性的细胞保护作用,而过高和持久的ERs则通过诱导转录因子CHOP表达、激活caspase-12和c—Jun氨基末端激酶(JNK)等导致细胞凋亡。近年来,越来越多的研究提示内质网应激是神经退行性病变、2型糖尿病以及肥胖等疾病发生过程中的重要环节。对内质网应激的细胞效应分子机制进行综述。随着对ERs机制理解的深入,有可能会发现新的分子标志物或新的诊疗策略。  相似文献   

16.
The complement pathway is best known for its role in immune surveillance and inflammation. However, its ability of opsonizing and removing not only pathogens, but also necrotic and apoptotic cells, is a phylogenetically ancient means of initiating tissue repair. The means and mechanisms of complement-mediated tissue repair are discussed in this review. There is increasing evidence that complement activation contributes to tissue repair at several levels. These range from the chemo-attraction of stem and progenitor cells to areas of complement activation, to increased survival of various cell types in the presence of split products of complement, and to the production of trophic factors by cells activated by the anaphylatoxins C3a and C5a. This repair aspect of complement biology has not found sufficient appreciation until recently. The following will examine this aspect of complement biology with an emphasis on the anaphylatoxins C3a and C5a.  相似文献   

17.
The complement inflammatory cascade is an essential component of the phylogenetically ancient innate immune response and is crucial to our natural ability to ward off infection. Complement is involved in host defence by triggering the generation of a membranolytic complex (the C5b-9 complex) at the surface of the pathogen. Complement fragments (opsonins; C1q, C3b and iC3b) interact with complement cell-surface receptors (C1qRp, CR1, CR3 and CR4) to promote phagocytosis and a local pro-inflammatory response that, ultimately, contributes to the protection and healing of the host. Complement is of special importance in the brain, where entrance of elements of the adaptive immune system is restricted by a blood-brain barrier. There is now compelling evidence that complement is produced locally in response to an infectious challenge. Moreover, complement biosynthesis and activation also occurs in neurodegenerative disorders such as Alzheimer's, Huntington's and Pick's diseases, and the cytolytic/cytotoxic activities of complement are thought to contribute to neuronal loss and brain tissue damage. However, recent data suggest that at least some of the complement components have the ability to contribute to neuroprotective pathways. The emerging paradigm is that complement is involved in the clearance of toxic cell debris (e.g. amyloid fibrils) and apoptotic cells, as well as in promoting tissue repair through the anti-inflammatory activities of C3a. Knowledge of the unique molecular and cellular innate immunological interactions that occur in the development and resolution of pathology in the brain should facilitate the design of effective therapeutic strategies.  相似文献   

18.
Undesired complement activation is a major cause of tissue injury in various pathological conditions and contributes to several immune complex diseases. Compstatin, a 13-residue peptide, is an effective inhibitor of the activation of complement component C3 and thus blocks a central and crucial step in the complement cascade. The precise binding site on C3, the structure in the bound form, and the exact mode of action of compstatin are unknown. Here we present the crystal structure of compstatin in complex with C3c, a major proteolytic fragment of C3. The structure reveals that the compstatin-binding site is formed by the macroglobulin (MG) domains 4 and 5. This binding site is part of the structurally stable MG-ring formed by domains MG 1-6 and is far away from any other known binding site on C3. Compstatin does not alter the conformation of C3c, whereas compstatin itself undergoes a large conformational change upon binding. We propose a model in which compstatin sterically hinders the access of the substrate C3 to the convertase complexes, thus blocking complement activation and amplification. These insights are instrumental for further development of compstatin as a potential therapeutic.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号