首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrological system of Lagoa Vermelha, a dolomite-precipitating lagoon in Brazil, was investigated using hydrogen and oxygen stable isotopic composition of the water collected during an annual cycle (1996–1997). These data demonstrated that dolomite formed in May–June during high saline conditions. High salinity apparently provides the ions and saturation state necessary for dolomite precipitation. Ion concentrations in the lagoon water indicated an identical timing of dolomite precipitation and demonstrated that dolomite formed at decreased sulfate concentrations. In Brejo do Espinho, a neighbouring lagoon, the ion concentrations in the water column revealed that dolomite precipitates throughout the year, most likely due to its higher salinity than Lagoa Vermelha during the measured period. In Lagoa Vermelha, high 34S of pore water sulfate and high sulfide concentrations correlated with dolomitic horizons, demonstrating the association of bacterial sulfate reduction with dolomite formation. In Brejo do Espinho high 34S of pore water sulfate and high sulfide concentrations occurred throughout the dolomitic sedimentary column. We conclude that elevated salinity and sulfate reduction are the main factors inducing dolomite precipitation in these lagoons, confirming the microbial dolomite formation theory. These results suggest that there may be other settings where sulfate-reducing bacteria induce dolomite precipitation under saline conditions, such as deep-sea sediments or sabkhas, and imply that microbial dolomite may significantly contribute to the sedimentary carbonate budget, particularly in the earliest Earth's history when anoxic conditions were more prevalent.  相似文献   

2.
Amplification of DNA bound on clay minerals   总被引:7,自引:0,他引:7  
DNA adsorbs and binds on clay minerals, which provides protection to the DNA against degradation by nucleases but does not eliminate the ability of bound DNA to transform cells. These observations support the concept that 'cryptic genes' can persist in the environment when bound on particles and that the genes could subsequently be expressed if an appropriate host was transformed. The polymerase chain reaction (PCR) was used to amplify free and bound DNA from Bacillus subtilis and calf thymus. DNA bound on montmorillonite, but not on kaolinite, was amplified. However, amplification occurred when kaolinite was pretreated with sodium metaphosphate. DNA was not released from the clays during the amplification procedure. The type of clay (e.g. its structure and charges) affected amplification. Because DNA bound on clay is protected against biodegradation, the ability to amplify DNA bound on clay by the PCR has palaeontological, archaeological, and anthropological implications for the detection of 'ancient' DNA, as well as for monitoring the persistence of recombinant DNA introduced to the environment in genetically modified organisms.  相似文献   

3.
Precambrian organic-walled microfossils (OWMs) are primarily preserved in mudstones and shales that are low in total organic carbon (TOC). Recent work suggests that high TOC may hinder OWM preservation, perhaps because it interferes with chemical interactions involving certain clay minerals that inhibit the decay of microorganisms. To test if clay mineralogy controls OWM preservation, and if TOC moderates the effect of clay minerals, we compared OWM preservational quality (measured by pitting on fossil surfaces and the deterioration of wall margins) to TOC, total clay, and specific clay mineral concentrations in 78 shale samples from 11 lithologic units ranging in age from ca. 1650 to 650 million years ago. We found that the probability of finding well-preserved microfossils positively correlates with total clay concentrations and confirmed that it negatively correlates with TOC concentrations. However, we found no evidence that TOC influences the effect of clay mineral concentrations on OWM preservation, supporting an independent role of both factors on preservation. Within the total clay fraction, well-preserved microfossils are more likely to occur in shales with high illite concentrations and low berthierine/chamosite concentrations; however, the magnitude of their effect on preservation is small. Therefore, there is little evidence that bulk clay chemistry is important in OWM preservation. Instead, we propose that OWM preservation is largely regulated by physical properties that isolate organic remains from microbial degradation such as food scarcity (low TOC) and low sediment permeability (high total clay content): low TOC increases the diffusive distances between potential carbon sources and heterotrophic microbes (or their degradative enzymes), while high clay concentrations reduce sediment pore space, thereby limiting the diffusion of oxidants and degradative enzymes to the sites of decay.  相似文献   

4.
The properties and microbial turnover of exopolymeric substances (EPS) were measured in a hypersaline nonlithifying microbial mat (Eleuthera, Bahamas) to investigate their potential role in calcium carbonate (CaCO3) precipitation. Depth profiles of EPS abundance and enzyme activities indicated that c . 80% of the EPS were turned over in the upper 15–20 mm. Oxic and anoxic mat homogenates amended with low-molecular-weight (LMW) organic carbon, sugar monomers, and different types of EPS revealed rapid consumption of all substrates. When comparing the consumption of EPS with that of other substrates, only marginally longer lag times and lower rates were observed. EPS (5–8%) were readily consumed during the conversion of labile to refractory EPS. This coincided with a decrease in glucosidase activity and a decrease in the number of acidic functional groups on the EPS. Approximately half of the calcium bound to the EPS remained after 10 dialyses steps. This tightly bound calcium was readily available to precipitate as CaCO3. We present a conceptual model in which LMW organic carbon complexed with the tightly bound calcium is released upon enzyme activity. This increases alkalinity and creates binding sites for carbonate and allows CaCO3 to precipitate. Therefore, this model explains interactions between EPS and CaCO3 precipitation, and underscores the critical role of aerobic and anaerobic microorganisms in early diagenesis and lithification processes.  相似文献   

5.
Grain-rich diets often lead to subacute ruminal acidosis (SARA) impairing rumen and systemic cattle health. Recent data suggest beneficial effects of a clay mineral (CM)- based product on the rumen microbiome of cattle during SARA. This study sought to investigate whether the CM supplementation can counteract SARA-induced perturbations of the bovine systemic health. The study used an intermittent diet-induced SARA-model with eight dry Holstein cows receiving either no additive as control or CM via concentrates (n=8 per treatment). Cows received first a forage diet (Baseline) for 1 week, followed by a 1-week SARA-challenge (SARA 1), a 1-week recovery phase (Recovery) and finally a second SARA-challenge for 2 weeks (SARA 2). Cows were monitored for feed intake, reticular pH and chewing behavior. Blood samples were taken and analyzed for metabolites related to glucose and lipid metabolism as well as liver health biomarkers. In addition, a targeted electrospray ionization-liquid chromatography-MS-based metabolomics approach was carried out on the plasma samples obtained at the end of the Baseline and SARA 1 phase. Data showed that supplementing the cows’ diet with CM improved ruminating chews per regurgitated bolus by 16% in SARA 1 (P=0.01) and enhanced the dry matter intake during the Recovery phase (P=0.05). Moreover, the SARA-induced decreases in several amino acids and phosphatidylcholines were less pronounced in cows receiving CM (P≤0.10). The CM-supplemented cows also had lower concentrations of lactate (P=0.03) and biogenic amines such as histamine and spermine (P<0.01) in the blood. In contrast, the concentration of acylcarnitines with key metabolic functions was increased in the blood of treated cows (P≤0.05). In SARA 2, the CM-cows had lower concentrations of the liver enzymes aspartate aminotransferase and γ-glutamyltransferase (P<0.05). In conclusion, the data suggest that supplementation of CM holds the potential to alleviate the negative effects of high-grain feeding in cattle by counteracting multiple SARA-induced perturbations in the systemic metabolism and liver health.  相似文献   

6.
The microbial diversity and community structure in twenty-one groundwater samples from high arsenic shallow aquifers of Hetao Basin, Inner Mongolia, China was investigated with an integrated approach including polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene phylogenetic analyses. A total of 25 bacterial and 32 archaeal DGGE bands were exercised for sequencing. Phylogenetic analyses showed that the bacterial DGGE bands were dominated by Proteobacteria, and the archaeal bands were dominated by Thaumarchaeota and Euryarchaeota. Based on arsenic concentrations, three samples (corresponding to low, medium, and high level of arsenic, respectively) were selected for construction of 16S rRNA gene clone libraries. A total of 912 (468 and 444 for bacteria and archaea, respectively) 16S rRNA gene clone sequences were obtained and subjected to phylogenetic analyses. The results showed that bacterial communities of these samples were dominated by Acinetobacter, Pseudomonas, Massilia, Dietzia, Planococcus, Brevundimonas, Aquabacterium and Geobacter, and archaeal communities by Nitrosophaera, Thermoprotei and Methanosaeta. The relative abundance of major groups varied as a function of changes in groundwater geochemistry. Acinetobacter, Brevundimonas, Geobacter, Thermoprotei and Methanosaeta dominated in high arsenic samples with high concentrations of methane and Fe(II), and low concentrations of SO2? 4 and NO? 3, while Pseudomonas and Nitrosophaera were abundant in low arsenic groundwater. These results imply that microbes play an important role in arsenic mobilization in the shallow aquifers of Hetao Basin, Inner Mongolia.  相似文献   

7.
复合微生态菌剂对黄瓜根际土壤微生物数量及酶活的影响   总被引:9,自引:0,他引:9  
采用盆栽试验的方法,研究黄瓜移苗时施入复合微生态菌剂对黄瓜不同生育时期根际土壤中微生物数量和土壤酶活动态变化的影响,结果显示复合微生态菌剂施入前期可提高土壤中细菌和放线菌的数量,随生育时期的延长效果变弱,于生育后期可有效降低真菌和尖孢镰刀菌的数量;复合微生态菌剂处理可提高土壤脲酶、过氧化氢酶、蔗糖酶和中性磷酸酶的活性,但随生育时期的延长,对中性磷酸酶和脲酶的效果减弱。可见复合土壤微生态菌剂的施入应该于适宜时期补施,才能保证其积极的功效。  相似文献   

8.
Summary 14C-labelled substrates (glucose, hemicellulose, cellulose, maize straw, and barley straw) were incubated in 4 soils with clay contents of, 6, 12, 16 and 34%. After 2 years an average of 20% of the labelled C remained in the soils; 10% of this residual C was in biomass as determined by fumigation with CHCl3.Air-drying, C addition (unlabelled glucose), heating (80°C), and grinding of the soils accelerated the evolution of labelled CO2. Grinding and heating had the largest effect, increasing CO2 evolution during the first 10 days by a factor of 15 to 22 relative to untreated soil. Air-drying had the least effect; it increased the CO2 evolution 7 to 9 times. The accelerating effect was still measurable, during the third month of incubation when the CO2 evolution was 1.2 to 1.9 times that from untreated soil.The treatments also affected the labelled biomass; air-drying had the least effect, and grinding the most. Three months after these two treatments the biomass was 3/4 and 1/4, respectively, of the amount at the start.On the average the treatments in all four soils had the greatest affect on humified material originating from glucose, hemicellulose, and cellulose; the least effect was on material originating from straw.The addition of unlabelled glucose accelerated the evolution of labelled CO2–C in all four soils. The size of the effect on CO2 evolution and on the biomass was similar to that of air-drying.Grinding killed a larger percentage of the biomass in the sandy soil than in the soils with a high content of clay. The effect of the other treatments was largely the same in all four soils.The effect of the treatments towards the native biomass and humic matter was largely parallel to that on the labelled biomass.The observations are consistent with the view that the biomass as determined by fumigation with CHCl3 mainly consists of dormant organisms. CO2 production — the biological activity — was related to the amount of available organic material and not the size of the biomass.  相似文献   

9.
广东省微生物肥料的回顾和展望   总被引:2,自引:0,他引:2  
对广东省微生物肥料发展的历史、发展概况提出看法,并预测未来10年时间肥料将进入其发展的新阶段即活性微生物复合肥阶段。  相似文献   

10.
硫氰酸盐(SCN-)是一种常见的金矿、纺织、印染和焦化工业污染物,有毒性、给生物安全带来危害.目前,随着现代生物技术的发展,通过高通量测序、转录组测序、DNA指纹图谱和靶向基因扩增等技术已经阐明了微生物降解硫氰酸盐的群落结构、遗传和代谢多样性,表明微生物降解硫氰酸盐是最可行的修复方法.综述了降解硫氰酸盐的微生物种类,碳...  相似文献   

11.
Soil improvement is one of the major concerns in civil engineering. Therefore, a variety of approaches have been employed for different soil types. The loose granular soils and sediments have always imposed challenges due to their low strength and bearing capacity as well as presenting difficulties in drilling and excavation. Biomediated soil improvement, i.e., utilizing some bacteria to precipitate calcite on soil particles, has recently been introduced as a novel link of biotechnology and civil engineering to improve the problematic soils. Biogrout as a branch of biomediated soil improvement is based upon microbial calcium carbonate precipitation (MICP). In the present study, the Taguchi method with the aim of optimizing the process was utilized to design the experiments (DOE). A standard L9 orthogonal array with four parameters comprising bacterial cell concentration, molar concentration ratio of nutrient solution, curing time, and flow rate, each assigned to three levels, was selected. In this regard, soil samples were stabilized in sandy soil columns. Two-phase injections were conducted by injecting the bacterium Sporosarcina pasteurii PTCC 1642 in the first phase and nutrient in the second phase. Specimens were subjected to an unconfined compressive strength (UCS) test. ANOVA pointed out how effectual each parameter was. The most effective parameter was curing time, which accounted for 45.97% of the overall variance of the experimental data followed by bacterial cell concentration (22.01%), nutrient strength (19.98%), and flow rate (12.04%). Predicted UCS values for the optimum condition were validated in a confirmation test. Indeed, the UCS of the soil increased from 85 kPa in the control sample to 930 kPa for the optimally treated specimen. It was concluded that rather than curing time, the other parameters are almost equally influential in the applied injection procedure.  相似文献   

12.
Ciliate assemblages are often overlooked, but ubiquitous components of microbial biofilms which require a better understanding. Ciliate, diatom and bacterial colonisation were evaluated on two fouling-release (FR) coatings, viz. Intersleek 970 and Hempasil X3, and two biocidal antifouling (AF) coatings, viz. Intersmooth 360 and Interspeed 5640, in Port Phillip Bay, Australia. A total of 15 genera were identified during the 10 week deployment. Intersleek 970 displayed the most rapid fouling by ciliates, reaching 63.3(± 5.9) cells cm?2. After 10 weeks, all four coatings were extensively fouled. However, the toxicity of the AF coatings still significantly inhibited microbial fouling compared to the FR coatings. On all treatments, colonies of sessile peritrichs dominated the ciliate assemblage in the early stage of succession, but as the biofilm matured, vagile ciliates exerted more influence on the assemblage structure. The AF coatings showed selective toxic effects, causing significant differences in the ciliate species assemblages among the treatments.  相似文献   

13.
14.
AIMS: To investigate the distribution of a polymicrobial community of biodegradative bacteria in (i) soil and groundwater at a former manufactured gas plant (FMGP) site and (ii) in a novel SEquential REactive BARrier (SEREBAR) bioremediation process designed to bioremediate the contaminated groundwater. METHODS AND RESULTS: Culture-dependent and culture-independent analyses using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR) for the detection of 16S ribosomal RNA gene and naphthalene dioxygenase (NDO) genes of free-living (planktonic groundwater) and attached (soil biofilm) samples from across the site and from the SEREBAR process was applied. Naphthalene arising from groundwater was effectively degraded early in the process and the microbiological analysis indicated a dominant role for Pseudomonas and Comamonas in its degradation. The microbial communities appeared highly complex and diverse across both the sites and in the SEREBAR process. An increased population of naphthalene degraders was associated with naphthalene removal. CONCLUSION: The distribution of micro-organisms in general and naphthalene degraders across the site was highly heterogeneous. Comparisons made between areas contaminated with polycyclic aromatic hydrocarbons (PAH) and those not contaminated, revealed differences in the microbial community profile. The likelihood of noncultured bacteria being dominant in mediating naphthalene removal was evident. SIGNIFICANCE AND IMPACT OF THE STUDY: This work further emphasizes the importance of both traditional and molecular-based tools in determining the microbial ecology of contaminated sites and highlights the role of noncultured bacteria in the process.  相似文献   

15.
Groundwater microbial community dynamics are poorly understood due to the challenges associated with accessing subsurface environments. In particular, microbial interactions and their impact on the subsurface carbon cycle remain unclear. In the present project, stable isotope probing with uniformly labeled [13C]-acetate was used to identify metabolically active and inactive bacterial populations based on their ability to assimilate acetate and/or its metabolites. Furthermore, we assessed whether substrate availability (bottom–up control) or grazing mortality (top–down control) played a greater role in shaping bacterial community composition by separately manipulating the organic carbon supply and the protozoan grazer population. A community fingerprinting technique, terminal restriction fragment length polymorphism, revealed that the bacterial community was not affected by changes in acetate availability but was significantly altered by the removal of protozoan grazers. In silico identification of terminal restriction fragments and 16S rRNA gene sequences from clone libraries revealed a bacterial community dominated by Proteobacteria, Firmicutes , and Bacteroidetes . Elucidation of the factors that structure the bacterial community will improve our understanding of the bacterial role in the carbon cycle of this important subterranean environment.  相似文献   

16.
生物冶金技术因具有流程短、成本低、环境友好, 且特别适合处理低品位、复杂、难处理的矿产资源等优点,已经成为研究热点。然而由于缺少高效菌种以及不能对浸矿体系微生物进行定量分析, 难以对浸矿工艺参数和微生物种群进行优化调控, 从而导致硫化矿生物浸出速度慢、浸出率低。随着基因芯片、菌种保存技术的发展, 这些难题在逐一被解决。对近年来针对硫化矿浸出过程微生物的基因功能与群落结构分析的研究进行了概述, 将帮助我们更好地了解基因组学与生物冶金技术结合的重要作用。  相似文献   

17.
Aims: To investigate the relationships between sulfate‐reducing bacteria (SRB), growth conditions, bentonite densities and copper sulfide generation under circumstances relevant to underground, high‐level radioactive waste repositories. Methods and Results: Experiments took place 450 m underground, connected under in situ pressure to groundwater containing SRB. The microbial reduction of sulfate to sulfide and subsequent corrosion of copper test plates buried in compacted bentonite were analysed using radioactive sulfur (35SO42?) as tracer. Mass distribution of copper sulfide on the plates indicated a diffusive process. The relationship between average diffusion coefficients (Ds) and tested density (ρ) was linear. Ds (m2 s?1) = ?0·004 × ρ (kg m?3) + 8·2, decreasing by 0·2 Ds units per 50 kg m?3 increase in density, from 1·2 × 10?11 m2 s?1 at 1750 kg m?3 to 0·2 × 10?11 m2 s?1 at 2000 kg m?3. Conclusions: It is possible that sulfide corrosion of waste canisters in future radioactive waste repositories depends mainly on sulfide concentration at the boundary between groundwater and the buffer, which in turn depends on SRB growth conditions (e.g., sulfate accessibility, carbon availability and electron donors) and geochemical parameters (e.g., presence of ferrous iron, which immobilizes sulfide). Maintaining high bentonite density is also important in mitigating canister corrosion. Significance and Impact of the Study: The sulfide diffusion coefficients can be used in safety calculations regarding waste canister corrosion. The work supports findings that microbial activity in compacted bentonite will be restricted. The study emphasizes the importance of growth conditions for sulfate reduction at the groundwater boundary of the bentonite buffer and linked sulfide production.  相似文献   

18.
西南喀斯特白云岩坡地土壤-表层岩溶带结构及水文特征   总被引:1,自引:0,他引:1  
表层岩溶带是喀斯特关键带的核心区域,具有重要的水文调蓄功能,但岩溶发育程度对表层岩溶带水文特征的影响还不明晰.本研究采用地球物理勘探和水文地质钻探技术,结合水分和水位动态监测,量化坡地岩溶发育和水文特征,解析土壤-表层岩溶带对降雨的响应规律.结果 表明:地球物理勘探可以较好地运用到岩溶区关键带结构的探测,坡地土壤和表层...  相似文献   

19.
为了正确区分微生物肥料产品中的大肠菌群,对近期检测的样品在伊红美兰(EMB)平板上得到的52株细菌进行了验证,并根据菌落的颜色和形态挑选出18个菌株,用Biolog微生物自动鉴定系统进行鉴定,以大肠杆菌科的4属7株标准菌株进行对照,鉴定结果和标准菌株一致。同时对微生物肥料中常用的13株革兰氏阳性(或可变)菌株和8株革兰氏阴性菌株也作了大肠菌群检测试验。其中,革兰氏阳性(或可变)菌株在乳糖胆盐发酵管和EMB平板上结果均为阴性,革兰氏阴性菌8株中有3株能利用乳糖,但都不产气,可以通过验证试验加以区分。明确了微生物肥料产品中常用菌种利用乳糖的情况以及在EMB平板上经常出现的不同菌落的分类地位,对大肠菌群的判定具有指导意义。  相似文献   

20.
乙酸对土壤胶体矿物吸附酸性磷酸酶的影响   总被引:2,自引:2,他引:0  
研究了不同pH值、不同浓度乙酸对酸性磷酸酶在土壤胶体和矿物表面吸附的影响,结果表明,在pH2~8的乙酸体系中,酶在胶体矿物表面的最大吸附pH一般出现在蛋白的等电点和矿物的零电荷点(PZC)之间,各土壤胶体和粘粒矿物对酶的吸附量大小顺序为针铁矿》黄棕壤>砖红壤>高岭石>二氧化锰,乙酸浓度对酶在胶体矿物表面的吸附量和吸附结合能具有较显著影响,在0~200mmol·L^-1范围内,随着乙酸浓度的增加,酶吸附量呈现先升高、后降低、再稳定的趋势,而吸附结合能的变化与此相反,并就乙酸对酶在胶体矿物表面吸附影响的可能机理进行了初步探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号