首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Progression of prostate cancer is facilitated by growth factors that activate critical signaling cascades thereby promote prostate cancer cell growth, survival, and migration. To investigate the effect of quercetin on insulin-like growth factor signaling and apoptosis in androgen independent prostate cancer cells (PC-3), IGF-IR, PI-3K, p-Akt, Akt, cyclin D1, Bad, cytochrome c, PARP, caspases-9 and 10 protein levels were assessed by western blot analysis. Mitochondrial membrane potency was detected by rhodamine-123 staining. Quercetin induced caspase-3 activity assay was performed for activation of apoptosis. Further, RT-PCR was also performed for Bad, IGF-I, II, IR, and IGFBP-3 mRNA expression. Quercetin significantly increases the proapoptotic mRNA levels of Bad, IGFBP-3 and protein levels of Bad, cytochrome C, cleaved caspase-9, caspase-10, cleaved PARP and caspase-3 activity in PC-3 cells. IGF-IRβ, PI3K, p-Akt, and cyclin D1 protein expression and mRNA levels of IGF-I, II and IGF-IR were decreased significantly. Further, treatment with PI3K inhibitor (LY294002) and quercetin showed decreased p-Akt levels. Apoptosis is confirmed by loss of mitochondrial membrane potential in quercetin treated PC-3 cells. This study suggests that quercetin decreases the survival of androgen independent prostate cancer cells by modulating the expression of insulin-like growth factors (IGF) system components, signaling molecules and induces apoptosis, which could be very useful for the androgen independent prostate cancer treatment.  相似文献   

2.
Quercetin and 2-Methoxyestradiol (2-ME) are promising anti-cancer substances. Our previous in vitro study showed that quercetin synergized with 2-Methoxyestradiol exhibiting increased antiproliferative and proapoptotic activity in both androgen-dependent LNCaP and androgen-independent PC-3 human prostate cancer cell lines. In the present study, we determined whether their combination could inhibit LNCaP and PC-3 xenograft tumor growth in vivo and explored the underlying mechanism. Human prostate cancer LNCaP and PC-3 cells were inoculated subcutaneously in male BALB/c nude mice. When xenograft tumors reached about 100 mm3, mice were randomly allocated to vehicle control, quercetin or 2-Methoxyestradiol singly treated and combination treatment groups. After therapeutic intervention for 4 weeks, combination treatment of quercetin and 2-ME i) significantly inhibited prostate cancer xenograft tumor growth by 46.8% for LNCaP and 51.3% for PC-3 as compared to vehicle control group, more effective than quercetin (28.4% for LNCaP, 24.8% for PC3) or 2-ME (32.1% for LNCaP, 28.9% for PC3) alone; ii) was well tolerated by BALB/c mice and no obvious toxic reactions were observed; iii) led to higher Bax/Bcl-2 ratio, cleaved caspase-3 protein expression and apoptosis rate; and iv) resulted in lower phosphorylated AKT (pAKT) protein level, vascular endothelial growth factor protein and mRNA expression, microvascular density and proliferation rate than single drug treatment. These effects were more remarkable compared to vehicle group. Therefore, combination of quercetin and 2-ME can serve as a novel clinical treatment regimen owning the potential of enhancing antitumor effect on prostate cancer in vivo and lessening the dose and side effects of either quercetin or 2-ME alone. These in vivo results will lay a further solid basis for subsequent researches on this novel therapeutic regimen in human prostate cancer.  相似文献   

3.
4.
Angiogenesis is a crucial step in the growth and metastasis of cancers, since it enables the growing tumor to receive oxygen and nutrients. Cancer prevention using natural products has become an integral part of cancer control. We studied the antiangiogenic activity of quercetin using ex vivo, in vivo and in vitro models. Rat aortic ring assay showed that quercetin at non-toxic concentrations significantly inhibited microvessel sprouting and exhibited a significant inhibition in the proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Most importantly, quercetin treatment inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Western blot analysis showed that quercetin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, mTOR, and ribosomal protein S6 kinase in HUVECs. Quercetin (20 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that quercetin inhibited tumorigenesis by targeting angiogenesis. Furthermore, quercetin reduced the cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Collectively the findings in the present study suggest that quercetin inhibits tumor growth and angiogenesis by targeting VEGF-R2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy.  相似文献   

5.
Among various molecular strategies by which prostate cancer cells evade apoptosis, phosphoinositide 3-kinase (PI3K)/Akt signaling represents a dominant survival pathway. However, different prostate cancer cell lines such as LNCaP and PC-3 display differential sensitivity to the apoptotic effect of PI3K inhibition in serum-free media, reflecting the heterogeneous nature of prostate cancer in apoptosis regulation. Whereas both cell lines are equally susceptible to LY294002-mediated Akt dephosphorylation, only LNCaP cells default to apoptosis, as evidenced by DNA fragmentation and cytochrome c release. In PC-3 cells, Akt deactivation does not lead to cytochrome c release, suggesting that the intermediary signaling pathway is short-circuited by an antiapoptotic factor. This study presents evidence that Bcl-xL overexpression provides a distinct survival mechanism that protects PC-3 cells from apoptotic signals emanating from PI3K inhibition. First, the Bcl-xL/BAD ratio in PC-3 cells is at least an order of magnitude greater than that of LNCaP cells. Second, ectopic expression of Bcl-xL protects LNCaP cells against LY294002-induced apoptosis. Third, antisense down-regulation of Bcl-xL sensitizes PC-3 cells to the apoptotic effect of LY294002. The physiological relevance of this Bcl-xL-mediated survival mechanism is further underscored by the protective effect of serum on LY294002-induced cell death in LNCaP cells, which is correlated with a multifold increase in Bcl-xL expression. In contrast to Bcl-xL, Bcl-2 expression levels are similar in both cells lines, and do not respond to serum stimulation, suggesting that Bcl-2 may not play a physiological role in antagonizing apoptosis signals pertinent to BAD activation in prostate cancer cells.  相似文献   

6.
Cytotoxic activity-guided fractionation of Erythrophleum fordii led to the isolation of two new cassaine diterpenoid–diterpenoid amide dimers, erythrophlesins H–I (1, 2). Spectral data indicated that they consist of asymmetrical dimeric structure via an ester bond between two cassaine diterpenoids. MTT assay confirmed that compound 1, erythrophlesin H, had the strongest cytotoxic effect toward the human prostate cancer cell line, PC-3. The molecular mechanism by which this compound induced apoptosis cell in prostate cancer remains unknown. Erythrophlesin H induced apoptosis in a dose-dependent manner. Acridine orange and annexin V-FITC/PI double staining confirmed that erythrophlesin H effectively induces apoptosis in PC-3 cells.  相似文献   

7.
Forty-eight nitrogen-containing quercetin derivatives were synthesized from readily available rutin or quercetin for the in vitro evaluation of their biological profiles. The WST-1 cell proliferation assay data indicate that thirty-nine out of the forty-eight derivatives possess significantly improved antiproliferative potency as compared with quercetin and fisetin, as well as the parent 3,3′,4′,7-O-tetramethylquercetin toward both androgen-sensitive (LNCaP) and androgen-insensitive (PC-3 and DU145) human prostate cancer cell lines. 5-O-Aminoalkyl-3,3′,4′,7-O-tetramethylquercetins were established as a better scaffold for further development as anti-prostate cancer agents. Among them, 5-O-(N,N-dibutylamino)propyl-3,3′,4′,7-O-tetramethylquercetin (44) was identified as the optimal derivative with IC50 values of 0.55–2.82 µM, being over 35182 times more potent than quercetin. The flow cytometry-based assays further demonstrate that 44 effectively activates PC-3 cell apoptosis.  相似文献   

8.
9.
目的:观察前列腺癌组织及不同前列腺癌细胞系中miR-182的表达,并探讨下调其表达对前列腺癌细胞增殖和凋亡的影响及机制。方法:采用实时荧光定量PCR(q RT-PCR)检测30例前列腺癌组织和30例相应的癌旁组织以及前列腺正常上皮RWPE-1细胞、前列腺癌PC-3、LNCa P和DU145细胞中miR-182的表达,进一步采用Lipfectamine 2000脂质体转染miRNA-182 inhibitor和阴性对照miRNA于PC-3细胞后,通过噻唑蓝(MTT)比色法检测细胞增殖情况,流式细胞术检测细胞凋亡率,免疫印迹(Western blot)法检测转录因子FOXO1、血管内皮生长因子(VEGF)和抑癌基因p53蛋白的表达。结果:miR-182在前列腺癌组织中的表达明显高于癌旁组织(P0.05);miR-182在前列腺癌细胞系PC-3、LNCa P和DU145中的表达均高于前列腺正常上皮细胞RWPE-1(P0.05),其中PC-3细胞中miR-182表达水平最高。转染miRNA-182 inhibitor至PC-3细胞成功下调miR-182表达后,细胞的增殖能力明显受到抑制,细胞凋亡能力明显增强,FOXO1表达水平显著升高,VEGF和p53的表达明显降低,差异均具有统计学意义(P0.05)。结论:miR-182在前列腺癌组织及细胞中呈高表达,下调miR-182的表达可能通过增加FOXO1的表达并减少VEGF和p53的表达,抑制前列腺癌细胞增殖并诱导细胞凋亡。  相似文献   

10.
Though the current therapies are effective at clearing an early stage prostate cancer, they often fail to treat late-stage metastatic disease. We aimed to investigate the molecular mechanisms underlying the anticancer effects of a natural triterpenoid, ganoderic acid DM (GA-DM), on two human prostate cancer cell lines: the androgen-independent prostate carcinoma (PC-3), and androgen-sensitive prostate adenocarcinoma (LNCaP). Cell viability assay showed that GA-DM was relatively more toxic to LNCaP cells than to PC-3 cells (IC50s ranged 45-55 µM for PC-3, and 20-25 µM for LNCaP), which may have occurred due to differential expression of p53. Hoechst DNA staining confirmed detectable nuclear fragmentation in both cell lines irrespective of the p53 status. GA-DM treatment decreased Bcl-2 proteins while it upregulated apoptotic Bax and autophagic Beclin-1, Atg5, and LC-3 molecules, and caused an induction of both early and late events of apoptotic cell death. Biochemical analyses of GA-DM-treated prostate cancer cells demonstrated that caspase-3 cleavage was notable in GA-DM-treated PC-3 cells. Interestingly, GA-DM treatment altered cell cycle progression in the S phase with a significant growth arrest in the G2 checkpoint and enhanced CD4 + T cell recognition of prostate tumor cells. Mechanistic study of GA-DM-treated prostate cancer cells further demonstrated that calpain activation and endoplasmic reticulum stress contributed to cell death. These findings suggest that GA-DM is a candidate for future drug design for prostate cancer as it activates multiple pathways of cell death and immune recognition.  相似文献   

11.
Over the past decade, evidence continues to mount showing that N-cadherin is a critical protein in cancer progression and metastasis. In the present study, we evaluated the expression of N-cadherin in human prostate cancer tissue specimens and cell lines. Enhanced expression of N-cadherin was observed in both the malignant and bone-metastasized prostate tissue specimens compared to the healthy prostate tissues. Consistent with the tissue array data, N-cadherin was highly expressed in PC3, but not in Du145 and LNCaP human prostate cell lines. Based on cell to cell binding assay, we found that N-cadherin expression facilitates homotypic interaction between human prostate cancer cells and human microvascular endothelial cells (HMEC). Human angiogenesis antibody array and in vitro angiogenesis assay showed that siRNA-mediated knockdown of N-cadherin reduced the secretion of monocyte chemoattractant protein-1 (MCP-1), which played a potential role in stimulating capillary network formation of HMEC. Additionally, culture supernatant of Du145 cells transfected with full-length N-cadherin expressing plasmid showed increased MCP-1 expression and chemoattractant ability compared to normal Du145 cells. Further, we noticed that blocking PI3K activity inhibited N-cadherin mediated MCP-1 expression. Our data demonstrated that N-cadherin in prostate cancer cell mediates cell–cell adhesion and regulates MCP-1 expression via the PI3K/Akt signaling pathway.  相似文献   

12.
Background: Cancer metastasis, involving multiple processes and various cytophysiological changes, is a primary cause of cancer death and may complicate the clinical management, even lead to death. Quercetin is a flavonoid and widely used as an antioxidant and recent studies have revealed its pleiotropic anticancer and antiproliferative capabilities. Gelatinases A and B (matrixmetalloproteinases 2 and 9) are enzymes known to involve in tumor invasion and metastases. In this study, we observed the precise involvement of quercetin role on these proteinases expression and activity. Design and methods: PC-3 cells were treated with quercetin at various concentrations (50 and 100 μM), for 24 h period and then subjected to western blot analysis to investigate the impact of quercetin on matrix metalloproteinase-2 (MMP-2) and 9 (MMP-9) expressions. Conditioned medium and cell lysate of quercetin-treated PC-3 cells were subjected to western blot analysis for proteins expression of MMP-2 and MMP-9. Gelatin zymography was also performed in quercetin treated PC-3 cells. Results: The results showed that quercetin treatment decreased the expressions of MMP-2 and MMP-9 in dose-dependent manner. The level of pro-MMP-9 was found to be high in the 100 μM quercetin-treated cell lysate of PC-3 cells, suggesting inhibitory role of quercetin on pro-MMP-9 activation. Gelatin zymography study also showed the decreased activities of MMP-2 and MMP-9 in quercetin treated cells. Conclusion: Hence, we speculated that inhibition of metastasis-specific MMPs in cancer cells may be one of the targets for anticancer function of quercetin, and thus provides the molecular basis for the development of quercetin as a novel chemopreventive agent for metastatic prostate cancer.  相似文献   

13.
Fang J  Ding M  Yang L  Liu LZ  Jiang BH 《Cellular signalling》2007,19(12):2487-2497
PI3K pathway exerts its function through its downstream molecule AKT in regulating various cell functions including cell proliferation, cell transformation, cell apoptosis, tumor growth and angiogenesis. PTEN is an inhibitor of PI3K, and its loss or mutation is common in human prostate cancer. But the direct role and mechanism of PI3K/PTEN signaling in regulating angiogenesis and tumor growth in vivo remain to be elucidated. In this study, by using chicken chorioallantoic membrane (CAM) and in nude mice models, we demonstrated that inhibition of PI3K activity by LY294002 decreased PC-3 cells-induced angiogenesis. Reconstitution of PTEN, the molecular inhibitor of PI3K in PC-3 cells inhibited angiogenesis and tumor growth. Immunohistochemical staining indicated that PTEN expression suppressed HIF-1, VEGF and PCNA expression in the tumor xenographs. Similarly, expression of AKT dominant negative mutant also inhibited angiogenesis and tumor growth, and decreased the expression of HIF-1 and VEGF in the tumor xenographs. These results suggest that inhibition of PI3K signaling pathway by PTEN inhibits tumor angiogenesis and tumor growth. In addition, we found that AKT is the downstream target of PI3K in controlling angiogenesis and tumor growth, and PTEN could inhibit angiogenesis by regulating the expression of HIF-1 and VEGF expression through AKT activation in PC-3 cells.  相似文献   

14.
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK, TNFSF12) is a member of the tumor necrosis factor superfamily. TWEAK activates the Fn14 receptor, and may regulate cell death, survival and proliferation in tumor cells. However, there is little information on the function and regulation of this system in prostate cancer. Fn14 expression and TWEAK actions were studied in two human prostate cancer cell lines, the androgen-independent PC-3 cell line and androgen-sensitive LNCaP cells. Additionally, the expression of Fn14 was analyzed in human biopsies of prostate cancer. Fn14 expression is increased in histological sections of human prostate adenocarcinoma. Both prostate cancer cell lines express constitutively Fn14, but, the androgen-independent cell line PC-3 showed higher levels of Fn14 that the LNCaP cells. Fn14 expression was up-regulated in PC-3 human prostate cancer cells in presence of inflammatory cytokines (TNFα/IFNγ) as well as in presence of bovine fetal serum. TWEAK induced apoptotic cell death in PC-3 cells, but not in LNCaP cells. Moreover, in PC-3 cells, co-stimulation with TNFα/IFNγ/TWEAK induced a higher rate of apoptosis. However, TWEAK or TWEAK/TNFα/IFNγ did not induce apoptosis in presence of bovine fetal serum. TWEAK induced cell death through activation of the Fn14 receptor. Apoptosis was associated with activation of caspase-3, release of mitochondrial cytochrome C and an increased Bax/BclxL ratio. TWEAK/Fn14 pathway activation promotes apoptosis in androgen-independent PC-3 cells under certain culture conditions. Further characterization of the therapeutic target potential of TWEAK/Fn14 for human prostate cancer is warranted.  相似文献   

15.
Coriander (Coriandrum sativum L.) is such an herb from the Apiaceae family, used both for its medicinal and nutritional properties for many centuries. In this study, the effects of C. sativum extract on gene expression, viability, colony formation, migration, and invasion of PC-3 and LNCaP prostate cancer cell lines have been investigated. The half maximal inhibitory concentration (IC50) dose in PC-3 and LNCaP cells was detected to be 2 and 5 mg/mL at the 24th hour, respectively. C. sativum extracts have been observed to cause a significant decrease in the expression of Akt and Bcl-2 in the PC-3 cells and just Akt in LNCaP cells while increasing in the expression of p53, caspase-9, caspase-10, PTEN, DR5, TRADD, PUMA, and NOXA. DR4 expression was increased in LNCaP cell line but not PC-3, and APAF and BID had increased expression in PC-3 but not the LNCaP cells. Our observations have shown that C. sativum extract decreased colony formation while inhibiting cell invasion and migration. Cell migration was hindered in PC-3 but not the LNCaP cells. In conclusion, this data present a valuable addition to the very limited data available out there on the potential use of C. sativum in prostate cancer treatment.  相似文献   

16.
Urokinase-type plasminogen activator (uPA) is a serine protease that is involved in cancer progression, especially invasion and metastasis including prostate cancer. uPA activation is mediated by transactivation of uPAR and epidermal growth factor receptor (EGF-R) in prostate cancer progression. Prostate cancer (PC-3) cells have highly invasive capacity and they express uPA and uPAR gene. PC-3 cells are treated with quercetin, which inhibits invasion and migration of PC-3 cells. Quercetin downregulates uPA, uPAR and EGF, EGF-R mRNA expressions. Quercetin inhibits cell survival factor β-catenin, NF-κB and also proliferative signalling molecules such as p-EGF-R, N-Ras, Raf-1, c.Fos c.Jun and p-c.Jun protein expressions. But quercetin increased p38 mitogen-activated protein kinase protein expression. Our results suggest that quercetin inhibit migration and invasion of prostate cancer cells. It shows the value for treatment of invasive and metastasis type of prostate cancer.  相似文献   

17.
AimTo evaluate the radiopotentiation of enzalutamide in human prostate cancer cells.BackgroundWhile radiotherapy is the first line of treatment for prostate cancer, androgen blockade therapies are demonstrating significant survival benefit as monotherapies. As androgen blockade can cause cell death by apoptosis, it is likely that androgen blockade will potentiate the cytotoxic activities of radiotherapy.Materials and methodsHere, we tested the potential synergistic effects of these two treatments over two human metastatic prostate cancer cells by real-time cell analysis (RTCA), androgen-sensitive LNCaP cells (Lymph Node Carcinoma of the Prostate) and androgen-independent PC-3. Both cell lines were highly resistant to high doses of radiotherapy.ResultsA pre-treatment of LNCaP cells with IC50 concentrations of enzalutamide significantly sensitized them to radiotherapy through enhanced apoptosis. In contrast, enzalutamide resistant PC-3 cells were not sensitized to radiotherapy by androgen blockade.ConclusionsThese results provide evidence that the enzalutamide/radiotherapy combination could maximize therapeutic responses in patients with enzalutamide-sensitive prostate cancer.  相似文献   

18.
Iejimalide B, a marine macrolide, causes growth inhibition in a variety of cancer cell lines at nanomolar concentrations. We have investigated the effects of Iejimalide B on cell cycle kinetics and apoptosis in the p53+/AR+ LNCaP and p53-/AR- PC-3 prostate cancer cell lines. Iejimalide B, has a dose and time dependent effect on cell number (as measured by crystal violet assay) in both cell lines. In LNCaP cells Iejimalide B induces a dose dependent G0/G1 arrest and apoptosis at 48 h (as measured by Apo-BrdU staining). In contrast, Iejimalide B initially induces G0/G1 arrest followed by S phase arrest but does not induce apoptosis in PC-3 cells. qPCR and Western analysis suggests that Iejimalide B modulates the steady state level of many gene products associated with cell cycle (including cyclins D, E, and B and p21(waf1/cip1)) and cell death (including survivin, p21B and BNIP3L) in LNCaP cells. In PC-3 cells Iejimalide B induces the expression of p21(waf1/cip1), down regulates the expression of cyclin A, and does not modulate the expression of the genes associated with cell death. Comparison of the effects of Iejimalide B on the two cell lines suggests that Iejimalide B induces cell cycle arrest by two different mechanisms and that the induction of apoptosis in LNCaP cells is p53-dependent.  相似文献   

19.
Background:Prostate cancer (PCa) is the second leading cause of cancer death in American population. In this manner, novel therapeutic approaches for identification of therapeutic targets for PCa has significant clinical implications. Quercetin is a potent cancer therapeutic agent and dietary antioxidant present in fruit and vegetables.Methods:To investigate the underlying mechanism by which the PCa was regulated, nanoparticles of quercetin were administrated to cells. For in vitro experiments, human PCa cell line LNCaP were involved. Cell viability assay and quantitative RT-PCR (qRT-PCR) for hedgehog signaling pathway genes were used to determine the key signaling pathway regulated for PCa progression.Results:The cell viability gradually decreased with increased concentration of quercetin nanoparticles. At 48 h, 40 mM concentration of quercetin treatment showed near 50% of viable cells. Quercetin nanoparticles upregulates Su(Fu) mRNA expressions and downregulates gli mRNA expressions in the LNCaP cells.Conclusion:The results showed that the hedgehog signaling targeted inhibition may have important implications of PCa therapeutics. Additionally, the outcomes provided new mechanistic basis for further examination of quercetin nanoparticles to discover potential treatment strategies and new targets for PCa inhibition.Key Words: Hedgehog, Prostate cancer, Proliferation, Quercetin nanoparticles, Signaling pathway  相似文献   

20.
Hyperthermia (HT) improves the efficacy of anti-cancer radiotherapy and chemotherapy. However, HT also inevitably evokes stress responses and increases the expression of heat-shock proteins (HSPs) in cancer cells. Among the HSPs, HSP70 is known as a pro-survival protein. In this study, we investigated the sensitizing effect of pifithrin (PFT)-μ, a small molecule inhibitor of HSP70, when three human prostate cancer cell lines (LNCaP, PC-3, and DU-145) were treated with HT (43°C for 2 h). All cell lines constitutively expressed HSP70, and HT further increased its expression in LNCaP and DU-145. Knockdown of HSP70 with RNA interference decreased the viability and colony-forming ability of cancer cells. PFT-μ decreased the viabilities of all cell lines at one-tenth the dose of Quercetin, a well-known HSP inhibitor. The combination therapy with suboptimal doses of PFT-μ and HT decreased the viability of cancer cells most effectively when PFT-μ was added immediately before HT, and this combination effect was abolished by pre-knockdown of HSP70, suggesting that the effect was mediated via HSP70 inhibition. The combination therapy induced cell death, partially caspase-dependent, and decreased proliferating cancer cells, with decreased expression of c-Myc and cyclin D1 and increased expression of p21WAF1/Cip, indicating arrest of cell growth. Additionally, the combination therapy significantly decreased the colony-forming ability of cancer cells compared to therapy with either alone. Furthermore, in a xenograft mouse model, the combination therapy significantly inhibited PC-3 tumor growth. These findings suggest that PFT-μ can effectively enhance HT-induced antitumor effects via HSP70 inhibition by inducing cell death and arrest of cell growth, and that PFT-μ is a promising agent for use in combination with HT to treat prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号