首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological complexity is a key component of evolvability, yet its study has been hampered by a focus on evolutionary trends of complexification and inconsistent definitions. Here, we demonstrate the utility of bringing complexity into the framework of epigenetics to better investigate its utility as a concept in evolutionary biology. We first analyze the existing metrics of complexity and explore the link between complexity and adaptation. Although recently developed metrics allow for a unified framework, they omit developmental mechanisms. We argue that a better approach to the empirical study of complexity and its evolution includes developmental mechanisms. We then consider epigenetic mechanisms and their role in shaping developmental and evolutionary trajectories, as well as the development and organization of complexity. We argue that epigenetics itself could have emerged from complexity because of a need to self‐regulate. Finally, we explore hybridization complexes and hybrid organisms as potential models for studying the association between epigenetics and complexity. Our goal is not to explain trends in biological complexity but to help develop and elucidate novel questions in the investigation of biological complexity and its evolution.  相似文献   

2.
3.
Proper functioning of complex phenotypes requires that multiple traits work together. Examination of relationships among traits within and between complex characters and how they interact to function as a whole organism is critical to advancing our understanding of evolutionary developmental plasticity. Phenotypic integration refers to the relationships among multiple characters of a complex phenotype, and their relationships with other functional units (modules) in an organism. In this review, I summarize a brief history of the concept of phenotypic integration in plant and animal biology. Following an introduction of concepts, including modularity, I use an empirical case-study approach to highlight recent advance in clarifying the developmental and genomic basis of integration. I end by highlighting some novel approaches to genomic and epigenetic perturbations that offer promise in further addressing the role of phenotypic integration in evolutionary diversification. In the age of the phenotype, studies that examine the genomic and developmental changes in relationships of traits across environments will shape the next chapter in our quest for understanding the evolution of complex characters.  相似文献   

4.
Gene duplication: past, present and future   总被引:20,自引:0,他引:20  
Gene duplication is of central interest to evolutionary developmental biology, having been implicated in evolutionary increases in complexity. These ideas stem principally from the Lewis model for the evolution of the BX-C and Ohno's proposal for genome duplications during chordate evolution. Here I revisit these models and show how recent data have confirmed their essential features, but forced some important revisions. These include revised dates for homeotic gene duplications and for widespread gene duplication in vertebrate evolution. I also outline the major unresolved questions in the study of gene duplication, and its relevance to evolution and development.  相似文献   

5.
During the last two decades evolutionary developmental biology has become a major research programme whose findings put into question some concepts lying at the core of the 'Synthetic Theory'. However, some authors are waiting for a 'revolution' in biology, one in which the existing genetic determinism will give way to a new conceptual understanding of the complexity of living organisms. This 'revolution' should necessarily pass through the elaboration of an appropriate theoretical framework integrating the non-linear dynamics of development as its fundamental basis. This objective implies a drastic shift in the way causality is generally understood as well as a purge of numerous convenient but misleading metaphors such as genetic or developmental programmes. Although most authors do not take these metaphors too literally, some persist in employing such 'instructionist' notions in a more literal perspective, and, in doing so, deny some concepts at the core of evolutionary developmental biology. We critically review two recent studies suggesting that shell coiling has re-evolved in a family of limpets (Calyptraeidae, Gastropoda). We stress that this putative re-evolution of snail shell coiling results only from an arbitrary scoring procedure leading us to consider shell coiling as a binary discrete character. We show that the way in which these authors connect this case study to evolutionary theories stems from the unwarranted premise of a linear mapping of genes onto phenotypes where particulate inheritance of morphological characters seems implicitly assumed. We illustrate how the persisting unclear role of genes in morphogenesis allows the maintenance of the adaptationist programme.  相似文献   

6.
The generation of variation is paramount for the action of natural selection. Although biologists are now moving beyond the idea that random mutation provides the sole source of variation for adaptive evolution, we still assume that variation occurs randomly. In this review, we discuss an alternative view for how phenotypic plasticity, which has become well accepted as a source of phenotypic variation within evolutionary biology, can generate nonrandom variation. Although phenotypic plasticity is often defined as a property of a genotype, we argue that it needs to be considered more explicitly as a property of developmental systems involving more than the genotype. We provide examples of where plasticity could be initiating developmental bias, either through direct active responses to similar stimuli across populations or as the result of programmed variation within developmental systems. Such biased variation can echo past adaptations that reflect the evolutionary history of a lineage but can also serve to initiate evolution when environments change. Such adaptive programs can remain latent for millions of years and allow development to harbor an array of complex adaptations that can initiate new bouts of evolution. Specifically, we address how ideas such as the flexible stem hypothesis and cryptic genetic variation overlap, how modularity among traits can direct the outcomes of plasticity, and how the structure of developmental signaling pathways is limited to a few outcomes. We highlight key questions throughout and conclude by providing suggestions for future research that can address how plasticity initiates and harbors developmental bias.  相似文献   

7.
Vidal M  Cusick ME  Barabási AL 《Cell》2011,144(6):986-998
Complex biological systems and cellular networks may underlie most genotype to phenotype relationships. Here, we review basic concepts in network biology, discussing different types of interactome networks and the insights that can come from analyzing them. We elaborate on why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease.  相似文献   

8.
Most studies in evolutionary developmental biology focus on large-scale evolutionary processes using experimental or molecular approaches, whereas evolutionary quantitative genetics provides mathematical models of the influence of heritable phenotypic variation on the short-term response to natural selection. Studies of morphological integration typically are situated in-between these two styles of explanation. They are based on the consilience of observed phenotypic covariances with qualitative developmental, functional, or evolutionary models. Here we review different forms of integration along with multiple other sources of phenotypic covariances, such as geometric and spatial dependencies among measurements. We discuss one multivariate method [partial least squares analysis (PLS)] to model phenotypic covariances and demonstrate how it can be applied to study developmental integration using two empirical examples. In the first example we use PLS to study integration between the cranial base and the face in human postnatal development. Because the data are longitudinal, we can model both cross-sectional integration and integration of growth itself, i.e., how cross-sectional variance and covariance is actually generated in the course of ontogeny. We find one factor of developmental integration (connecting facial size and the length of the anterior cranial base) that is highly canalized during postnatal development, leading to decreasing cross-sectional variance and covariance. A second factor (overall cranial length to height ratio) is less canalized and leads to increasing (co)variance. In a second example, we examine the evolutionary significance of these patterns by comparing cranial integration in humans to that in chimpanzees.  相似文献   

9.
Accounting for the evolutionary origins of morphological novelty is one of the core challenges of contemporary evolutionary biology. A successful explanatory framework requires the integration of different biological disciplines, but the relationships between developmental biology and standard evolutionary biology remain contested. There is also disagreement about how to define the concept of evolutionary novelty. These issues were the subjects of a workshop held in November 2009 at the University of Alberta. We report on the discussion and results of this workshop, addressing questions about (i) how to define evolutionary novelty and understand its significance, (ii) how to interpret evolutionary developmental biology as a synthesis and its relation to neo-Darwinian evolutionary theory, and (iii) how to integrate disparate biological approaches in general.  相似文献   

10.
The evolutionary conservation of glial cells has been appreciated since Ramon y Cajal and Del Rio Hortega first described the morphological features of cells in the nervous system. We now appreciate that glial cells have essential roles throughout life in most nervous systems. The field of glial cell biology has grown exponentially in the last ten years. This new wealth of knowledge has been aided by seminal findings in non-mammalian model systems. Ultimately, such concepts help us to understand glia in mammalian nervous systems. Rather than summarizing the field of glial biology, I will first briefly introduce glia in non-mammalian models systems. Then, highlight seminal findings across the glial field that utilized non-mammalian model systems to advance our understanding of the mammalian nervous system. Finally, I will call attention to some recent findings that introduce new questions about glial cell biology that will be investigated for years to come.  相似文献   

11.
Evolutionary developmental biology (Evo-Devo) as a discipline is concerned, among other things, with discovering and understanding the role of changes in developmental mechanisms in the evolutionary origin of aspects of the phenotype. In a very real sense, Evo-Devo opens the black box between genotype and phenotype, or more properly, phenotypes as multiple life history stages arise in many organisms from a single genotype. Changes in the timing or positioning of an aspect of development in a descendant relative to an ancestor (heterochrony and heterotopy) were two evolutionary developmental mechanisms identified by Ernst Haeckel in the 1870s. Many more have since been identified, in large part because of our enhanced understanding of development and because new mechanisms emerge as development proceeds: the transfer from maternal to zygotic genomic control; cell-to-cell interactions; cell differentiation and cell migration; embryonic inductions; functional interactions at the tissue and organ levels; growth. Within these emergent processes, gene networks and gene cascades (genetic modules) link the genotype with morphogenetic units (cellular modules, namely germ layers, embryonic fields or cellular condensations), while epigenetic processes such as embryonic inductions, tissue interactions and functional integration, link morphogenetic units to the phenotype. Evolutionary developmental mechanisms also include interactions between individuals of the same species, individuals of different species, and species and their biotic and/or abiotic environment. Such interactions link ecological communities. Importantly, there is little to distinguish the causality that underlies these interactions from that which underlies inductive interactions within embryos.  相似文献   

12.
Understanding the links between genetic variation and fitness in natural populations is a central goal of evolutionary genetics. This monumental task spans the fields of classical and molecular genetics, population genetics, biochemistry, physiology, developmental biology, and ecology. Advances to our molecular and developmental toolkits are facilitating integrative approaches across these traditionally separate fields, providing a more complete picture of the genotype‐phenotype map in natural and non‐model systems. Here, we summarize research presented at the first annual symposium of the UNVEIL Network, an NSF‐funded collaboration between the University of Montana and the University of Nebraska, Lincoln, which took place from the 1st to the 3rd of June, 2018. We discuss how this body of work advances basic evolutionary science, what it implies for our ability to predict evolutionary change, and how it might inform novel conservation strategies.  相似文献   

13.
Developmental biology, like many other areas of biology, has undergone a dramatic shift in the perspective from which developmental processes are viewed. Instead of focusing on the actions of a handful of genes or functional RNAs, we now consider the interactions of large functional gene networks and study how these complex systems orchestrate the unfolding of an organism, from gametes to adult. Developmental biologists are beginning to realize that understanding ontogeny on this scale requires the utilization of computational methods to capture, store and represent the knowledge we have about the underlying processes. Here we review the use of the Gene Ontology (GO) to study developmental biology. We describe the organization and structure of the GO and illustrate some of the ways we use it to capture the current understanding of many common developmental processes. We also discuss ways in which gene product annotations using the GO have been used to ask and answer developmental questions in a variety of model developmental systems. We provide suggestions as to how the GO might be used in more powerful ways to address questions about development. Our goal is to provide developmental biologists with enough background about the GO that they can begin to think about how they might use the ontology efficiently and in the most powerful ways possible. Mol. Reprod. Dev. 77: 314–329, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Why animal communication displays are so complex and how they have evolved are active foci of research with a long and rich history. Progress towards an evolutionary analysis of signal complexity, however, has been constrained by a lack of hypotheses to explain similarities and/or differences in signalling systems across taxa. To address this, we advocate incorporating a systems approach into studies of animal communication—an approach that includes comprehensive experimental designs and data collection in combination with the implementation of systems concepts and tools. A systems approach evaluates overall display architecture, including how components interact to alter function, and how function varies in different states of the system. We provide a brief overview of the current state of the field, including a focus on select studies that highlight the dynamic nature of animal signalling. We then introduce core concepts from systems biology (redundancy, degeneracy, pluripotentiality, and modularity) and discuss their relationships with system properties (e.g. robustness, flexibility, evolvability). We translate systems concepts into an animal communication framework and accentuate their utility through a case study. Finally, we demonstrate how consideration of the system-level organization of animal communication poses new practical research questions that will aid our understanding of how and why animal displays are so complex.  相似文献   

15.
Over the past two to three decades, developmental biology has demonstrated that all multicellular organisms in the animal kingdom share many of the same molecular building blocks and many of the same regulatory genetic pathways. Yet we still do not understand how the various organisms use these molecules and pathways to assume all the forms we know today. Evolutionary developmental biology tackles this problem by comparing the development of one organism to another and comparing the genes involved and gene functions to understand what makes one organism different from another. In this review, we revisit a set of seven concepts defined by Lewis Wolpert (fate maps, asymmetric division, induction, competence, positional information, determination, and lateral inhibition) that describe the characters of many developmental systems and supplement them with three additional concepts (developmental genomics, genetic redundancy, and genetic networks). We will discuss examples of comparative developmental studies where these concepts have guided observations on the advent of a developmental novelty. Finally, we identify a set of evolutionary frameworks, such as developmental constraints, cooption, duplication, parallel and convergent evolution, and homoplasy, to adequately describe the evolutionary properties of developmental systems.  相似文献   

16.
Understanding how developmental systems evolve over time is a key question in stem cell and developmental biology research. However, due to hurdles of existing experimental techniques, our understanding of these systems as a whole remains partial and coarse. In recent years, we have been constructing in-silico models that synthesize experimental knowledge using software engineering tools. Our approach integrates known isolated mechanisms with simplified assumptions where the knowledge is limited. This has proven to be a powerful, yet underutilized, tool to analyze the developmental process. The models provide a means to study development in-silico by altering the model’s specifications, and thereby predict unforeseen phenomena to guide future experimental trials. To date, three organs from diverse evolutionary organisms have been modeled: the mouse pancreas, the C. elegans gonad, and partial rodent brain development. Analysis and execution of the models recapitulated the development of the organs, anticipated known experimental results and gave rise to novel testable predictions. Some of these results had already been validated experimentally. In this paper, I review our efforts in realistic in-silico modeling of stem cell research and developmental biology and discuss achievements and challenges. I envision that in the future, in-silico models as presented in this paper would become a common and useful technique for research in developmental biology and related research fields, particularly regenerative medicine, tissue engineering and cancer therapeutics.  相似文献   

17.
The concept of homology continues to attract more and more commentary. In systematic and evolutionary biology the meaning of homology as synapomorphic similarity inherited from a common ancestor has gained wide acceptance over the last three or four decades. In recent years, however, developmental biologists, in particular, have argued for a new approach to, and new definition for, homology that revolves around the desire to make it more process-oriented and more mechanistic. These efforts raise questions about the relationship between developmental and evolutionary biology as well as how the evolution of development is to be studied. It is argued in this paper that this new approach to homology seemingly decouples developmental biology from the study of the evolution of development rather than to facilitate that study. In contrast, applying the notion of historical, phylogenetic homology to developmental data is inherently comparative and therefore evolutionary.  相似文献   

18.
Dominance is a basic property of inheritance systems describing the link between a diploid genotype at a single locus and the resulting phenotype. Models for the evolution of dominance have long been framed as an opposition between the irreconcilable views of Fisher in 1928 supporting the role of largely elusive dominance modifiers and Wright in 1929, who viewed dominance as an emerging property of the structure of enzymatic pathways. Recent theoretical and empirical advances however suggest that these opposing views can be reconciled, notably using models investigating the regulation of gene expression and developmental processes. In this more comprehensive framework, phenotypic dominance emerges from departures from linearity between any levels of integration in the genotype-to-phenotype map. Here, we review how these different models illuminate the emergence and evolution of dominance. We then detail recent empirical studies shedding new light on the diversity of molecular and physiological mechanisms underlying dominance and its evolution. By reconciling population genetics and functional biology, we hope our review will facilitate cross-talk among research fields in the integrative study of dominance evolution.  相似文献   

19.
In complex organisms, neutral evolution of genomic architecture, associated compensatory interactions in protein networks and emergent developmental processes can delineate the directions of evolutionary change, including the opportunity for natural selection. These effects are reflected in the evolution of developmental programmes that link genomic architecture with a corresponding functioning phenotype. Two recent findings call for closer examination of the rules by which these links are constructed. First is the realization that high dimensionality of genotypes and emergent properties of autonomous developmental processes (such as capacity for self-organization) result in the vast areas of fitness neutrality at both the phenotypic and genetic levels. Second is the ubiquity of context- and taxa-specific regulation of deeply conserved gene networks, such that exceptional phenotypic diversification coexists with remarkably conserved generative processes. Establishing the causal reciprocal links between ongoing neutral expansion of genomic architecture, emergent features of organisms' functionality, and often precisely adaptive phenotypic diversification therefore becomes an important goal of evolutionary biology and is the latest reincarnation of the search for a framework that links development, functioning and evolution of phenotypes. Here I examine, in the light of recent empirical advances, two evolutionary concepts that are central to this framework-natural selection and inheritance-the general rules by which they become associated with emergent developmental and homeostatic processes and the role that they play in descent with modification.  相似文献   

20.
One of the surprising insights gained from research in evolutionary developmental biology (evo-devo) is that increasing diversity in body plans and morphology in organisms across animal phyla are not reflected in similarly dramatic changes at the level of gene composition of their genomes. For instance, simplicity at the tissue level of organization often contrasts with a high degree of genetic complexity. Also intriguing is the observation that the coding regions of several genes of invertebrates show high sequence similarity to those in humans. This lack of change (conservation) indicates that evolutionary novelties may arise more frequently through combinatorial processes, such as changes in gene regulation and the recruitment of novel genes into existing regulatory gene networks (co-option), and less often through adaptive evolutionary processes in the coding portions of a gene. As a consequence, it is of great interest to examine whether the widespread conservation of the genetic machinery implies the same developmental function in a last common ancestor, or whether homologous genes acquired new developmental roles in structures of independent phylogenetic origin. To distinguish between these two possibilities one must refer to current concepts of phylogeny reconstruction and carefully investigate homology relationships. Particularly problematic in terms of homology decisions is the use of gene expression patterns of a given structure. In the future, research on more organisms other than the typical model systems will be required since these can provide insights that are not easily obtained from comparisons among only a few distantly related model species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号