共查询到3条相似文献,搜索用时 0 毫秒
1.
Summary The haustorial structure of three African parasitic members of the family Scrophulariaceae (Buchnera hispida, Rhamphicarpa fistulosa, andStriga hermonthica) has been studied with regard to the interface between haustoria and the invaded host roots. Immunocytochemical observations at the light and electron microscopical level were carried out with monoclonal antibodies against pectin. JIM5, JIM7, and hydroxyproline-rich glycoprotein (HRGP), LM1. Lignins have been visualized by phloroglucinolhydrochloric acid staining. At the margin of the lateral interface (contact area of host root cortex and parasite cells), JIM5- and JIM7-labelled substances accumulate between parasite papillae and the host root surface indicating that pectins are implicated in sealing the parasite to the attacked host organ. The lateral interface is characterized by the presence of compressed, necrotic host cells, whereas the central interface (contact area between host stele and parasite cells) is generally devoid of host cell remnants. Phenolic substances and/or lignins can be found at the site of penetration of the haustorium into the host root. These observations and the fact that HRGPs accumulate at the host side of the interface support the view of, at least, a partial defense reaction in the invaded host root tissues. Within haustoria, HRGPs were restricted to differentiating xylem elements, implying a spatio-temporal regulation of HRGPs in developmental processes.Abbreviations BSA
bovine serum albumin
- FITC
fluorescein isothiocyanate
- HRGP
hydroxyproline-rich glycoprotein
- LM
light microscopy
- MAb
monoclonal antibody
- TBSB
Tris-buffered saline with bovine serum albumin
- TBSB-T
Tris-buffered saline with bovine serum albumin and Tween 20
- TEM
transmission electron microscopy 相似文献
2.
Ramesh Prasad 《Journal of biomolecular structure & dynamics》2018,36(3):621-633
Tissue factor (TF)-mediated factor VII (FVII) activation and a subsequent proteolytic TF-FVIIa binary complex formation is the key step initiating the coagulation cascade, with implications in various homeostatic and pathologic scenarios. TF binding allosterically modifies zymogen-like free FVIIa to its highly catalytically active form. As a result of unresolved crystal structure of the full-length TF1-263-FVIIa binary complex and free FVIIa, allosteric alterations in FVIIa following its binding to full-length TF and the consequences of these on function are not entirely clear. The present study aims to map and identify structural alterations in FVIIa and TF resulting from full-length TF binding to FVIIa and the key events responsible for enhanced FVIIa activity in coagulation. We constructed the full-length TF1-263-FVIIa membrane bound complex using computational modeling and subjected it to molecular dynamics (MD) simulations. MD simulations showed that TF alters the structure of each domain of FVIIa and these combined alterations contribute to enhanced TF-FVIIa activity. Detailed, domain-wise investigation revealed several new non-covalent interactions between TF and FVIIa that were not found in the truncated soluble TF-FVIIa crystal structure. The structural modulation of each FVIIa domain imparted by TF indicated that both inter and intra-domain communication is crucial for allosteric modulation of FVIIa. Our results suggest that these newly formed interactions can provide additional stability to the protease domain and regulate its activity profile by governing catalytic triad (CT) orientation and localization. The unexplored newly formed interactions between EGF2 and TF provides a possible explanation for TF-induced allosteric activation of FVIIa. 相似文献
3.
Rodriguez Milla MA Uno Y Chang IF Townsend J Maher EA Quilici D Cushman JC 《FEBS letters》2006,580(3):904-911
Calcium-dependent protein kinases (CDPKs) are sensor-transducer proteins capable of decoding calcium signals in diverse phosphorylation-dependent calcium signaling networks in plants and some protists. Using a novel yeast two-hybrid (YTH) approach with constitutively active and/or catalytically inactive forms of AtCPK11 as bait, we identified AtDi19 as an AtCPK11-interacting protein. AtDi19 is a member of a small family of stress-induced genes. The interaction was confirmed using pull-down assays with in vitro translated AtCPK11 and GST-AtDi19 and localization studies in Arabidopsis protoplasts cotransfected with AtCPK11:GFP and AtDi19:DsRed2 protein fusions. We further showed that the interaction of AtDi19 is specific to both AtCPK4 and AtCPK11, whereas other closely related CPKs from Arabidopsis interacted weakly (e.g., AtCPK12) or did not interact (e.g., AtCPK26, AtCPK5 and AtCPK1) with AtDi19. Deletion analyses showed that a region containing two predicted nuclear localization signals (NLS) and a nuclear export signal (NES) of AtDi19 is essential for interaction with AtCPK11. We further demonstrated that AtDi19 is phosphorylated by AtCPK11 in a Ca(2+)-dependent manner at Thr105 and Ser107 within the AtDi19 bipartite NLS using in vitro kinase assays. Our data suggest that disruption of the autoinhibitor domain leading to the formation of a constitutively active CDPK may stabilize kinase-substrate interactions without affecting specificity. 相似文献