首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite recent mass spectrometry (MS)‐based breakthroughs, comprehensive ADP‐ribose (ADPr)‐acceptor amino acid identification and ADPr‐site localization remain challenging. Here, we report the establishment of an unbiased, multistep ADP‐ribosylome data analysis workflow that led to the identification of tyrosine as a novel ARTD1/PARP1‐dependent in vivo ADPr‐acceptor amino acid. MS analyses of in vitro ADP‐ribosylated proteins confirmed tyrosine as an ADPr‐acceptor amino acid in RPS3A (Y155) and HPF1 (Y238) and demonstrated that trans‐modification of RPS3A is dependent on HPF1. We provide an ADPr‐site Localization Spectra Database (ADPr‐LSD), which contains 288 high‐quality ADPr‐modified peptide spectra, to serve as ADPr spectral references for correct ADPr‐site localizations.  相似文献   

2.
Myocardial ischaemia/reperfusion (I/R) injury attenuates the beneficial effects of reperfusion therapy. Poly(ADP‐ribose) polymerase (PARP) is overactivated during myocardial I/R injury. Mitophagy plays a critical role in the development of myocardial I/R injury. However, the effect of PARP activation on mitophagy in cardiomyocytes is unknown. In this study, we found that I/R induced PARP activation and mitophagy in mouse hearts. Poly(ADP‐ribose) polymerase inhibition reduced the infarct size and suppressed mitophagy after myocardial I/R injury. In vitro, hypoxia/reoxygenation (H/R) activated PARP, promoted mitophagy and induced cell apoptosis in cardiomyocytes. Poly(ADP‐ribose) polymerase inhibition suppressed H/R‐induced mitophagy and cell apoptosis. Parkin knockdown with lentivirus vectors inhibited mitophagy and prevented cell apoptosis in H/R‐treated cells. Poly(ADP‐ribose) polymerase inhibition prevented the loss of the mitochondrial membrane potential (ΔΨm). Cyclosporin A maintained ΔΨm and suppressed mitophagy but FCCP reduced the effect of PARP inhibition on ΔΨm and promoted mitophagy, indicating the critical role of ΔΨm in H/R‐induced mitophagy. Furthermore, reactive oxygen species (ROS) and poly(ADP‐ribosylation) of CypD and TSPO might contribute to the regulation of ΔΨm by PARP. Our findings thus suggest that PARP inhibition protects against I/R‐induced cell apoptosis by suppressing excessive mitophagy via the ΔΨm/Parkin pathway.  相似文献   

3.
Adenosine diphosphate (ADP)‐ribosylation is a post‐translational protein modification implicated in the regulation of a range of cellular processes. A family of proteins that catalyse ADP‐ribosylation reactions are the poly(ADP‐ribose) (PAR) polymerases (PARPs). PARPs covalently attach an ADP‐ribose nucleotide to target proteins and some PARP family members can subsequently add additional ADP‐ribose units to generate a PAR chain. The hydrolysis of PAR chains is catalysed by PAR glycohydrolase (PARG). PARG is unable to cleave the mono(ADP‐ribose) unit directly linked to the protein and although the enzymatic activity that catalyses this reaction has been detected in mammalian cell extracts, the protein(s) responsible remain unknown. Here, we report the homozygous mutation of the c6orf130 gene in patients with severe neurodegeneration, and identify C6orf130 as a PARP‐interacting protein that removes mono(ADP‐ribosyl)ation on glutamate amino acid residues in PARP‐modified proteins. X‐ray structures and biochemical analysis of C6orf130 suggest a mechanism of catalytic reversal involving a transient C6orf130 lysyl‐(ADP‐ribose) intermediate. Furthermore, depletion of C6orf130 protein in cells leads to proliferation and DNA repair defects. Collectively, our data suggest that C6orf130 enzymatic activity has a role in the turnover and recycling of protein ADP‐ribosylation, and we have implicated the importance of this protein in supporting normal cellular function in humans.  相似文献   

4.
The human SSB homologue 1 (hSSB1) has been shown to facilitate homologous recombination and double‐strand break signalling in human cells. Here, we compare the DNA‐binding properties of the SOSS1 complex, containing SSB1, with Replication Protein A (RPA), the primary single‐strand DNA (ssDNA) binding complex in eukaryotes. Ensemble and single‐molecule approaches show that SOSS1 binds ssDNA with lower affinity compared to RPA, and exhibits less stable interactions with DNA substrates. Nevertheless, the SOSS1 complex is uniquely capable of promoting interaction of human Exo1 with double‐strand DNA ends and stimulates its activity independently of the MRN complex in vitro. Both MRN and SOSS1 also act to mitigate the inhibitory action of the Ku70/80 heterodimer on Exo1 activity in vitro. These results may explain why SOSS complexes do not localize with RPA to replication sites in human cells, yet have a strong effect on double‐strand break resection and homologous recombination.  相似文献   

5.
Base excision repair (BER) is one of the most frequently used cellular DNA repair mechanisms and modulates many human pathophysiological conditions related to DNA damage. Through live cell and in vitro reconstitution experiments, we have discovered a major sub‐pathway of conventional long‐patch BER that involves formation of a 9‐nucleotide gap 5′ to the lesion. This new sub‐pathway is mediated by RECQ1 DNA helicase and ERCC1‐XPF endonuclease in cooperation with PARP1 poly(ADP‐ribose) polymerase and RPA. The novel gap formation step is employed during repair of a variety of DNA lesions, including oxidative and alkylation damage. Moreover, RECQ1 regulates PARP1 auto‐(ADP‐ribosyl)ation and the choice between long‐patch and single‐nucleotide BER, thereby modulating cellular sensitivity to DNA damage. Based on these results, we propose a revised model of long‐patch BER and a new key regulation point for pathway choice in BER.  相似文献   

6.
If replication forks are perturbed, a multifaceted response including several DNA repair and cell cycle checkpoint pathways is activated to ensure faithful DNA replication. Here, we show that poly(ADP‐ribose) polymerase 1 (PARP1) binds to and is activated by stalled replication forks that contain small gaps. PARP1 collaborates with Mre11 to promote replication fork restart after release from replication blocks, most likely by recruiting Mre11 to the replication fork to promote resection of DNA. Both PARP1 and PARP2 are required for hydroxyurea‐induced homologous recombination to promote cell survival after replication blocks. Together, our data suggest that PARP1 and PARP2 detect disrupted replication forks and attract Mre11 for end processing that is required for subsequent recombination repair and restart of replication forks.  相似文献   

7.
Rat testis H1 proteins were poly(ADP‐ribosyl)ated in vitro. The modifying product, poly(ADP‐ribose), was found covalently bound to each histone variant at various extents and exhibited distinct structural features (linear and short, rather than branched and long chains). Interest was focused on the somatic H1a, particularly abundant in the testis, as compared with other tissues, and the testis‐specific H1t, which appears only at the pachytene spermatocyte stage of germ cell development. These H1s were modified with poly(ADP‐ribose) by means of two in vitro experimental approaches. In the first system, each variant was incubated with purified rat testis poly(ADP‐ribose)polymerase in the presence of [32P] NAD. In parallel, poly(ADP‐ribosyl)ated H1s were also prepared following incubation of intact rat testis nuclei with [32P] NAD. In both experiments, the poly(ADP‐ribosyl)ated proteins were purified from the native forms by means of phenyl boronic agarose chromatography. The results from both analyses were in agreement and showed qualitative differences with regard to the poly(ADP‐ribose) covalently associated with H1a and H1t. Comparison of the bound polymers clearly indicated that the oligomers associated with H1a were within 10–12 units long, whereas longer chains (≤20 ADP‐R units) were linked to H1t. Individual poly(ADP‐ribosyl)ated H1s were complexed with homologous H1‐depleted oligonucleosomes (0.5–2.5 kbp) in order to measure their ability to condensate chromatin, in comparison with the native ones. Circular dichroism showed that the negative charges of the oligomeric polyanion, although present in limited numbers, highly influenced the DNA‐binding properties of the analyzed H1s. In particular, the poly(ADP‐ribosyl)ated H1a and H1t had opposite effects on the condensation of H1‐depleted oligonucleosomes. J. Cell. Biochem. 76:20–29, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
Activation of poly(ADP‐ribose) polymerases (PARPs) is considered a key event in the molecular and cellular processes leading from acute asthma attacks to bronchial hyper‐reactivity, leucocyte recruitment, chronic inflammation, airway remodelling and lung damage. The present investigation has been carried out to investigate the action of hydroxyl‐dimethylaminomethyl‐thieno[2,3‐c]isoquinolin‐5(4H)‐one (HYDAMTIQ), a new potent PARP inhibitor, in the process leading from asthma‐like events to airway damage. Ovalbumin‐sensitized guinea pigs exposed two times to allergen inhalation were treated for 8 days with vehicle or HYDAMTIQ. Asthma‐like signs, bronchial hyper‐reactivity to methacholine, cytokine production, histamine release from mast cells, airway remodelling, collagen deposition and lung damage were evaluated. Repeated HYDAMTIQ administration (1‐10 mg/kg/day i.p.) reduced lung PARP activity, delayed the appearance and reduced the severity of allergen‐induced cough and dyspnoea and dampened the increased bronchial responses to methacholine. HYDAMTIQ‐treated animals presented reduced bronchial or alveolar abnormalities, lower number of eosinophils and other leucocytes in the lung and decreased smooth muscle or goblet cell hyperplasia. The treatment also reduced lung oxidative stress markers, such as malondialdehyde or 8‐hydroxy‐2′‐deoxyguanosine and the lung content of pro‐inflammatory cytokines (TNF‐α, interleukin (IL)‐1β, IL‐5, IL‐6 and IL‐18). Finally, mast cells isolated from the peritoneal or pleural cavities of sensitized, HYDAMTIQ‐treated animals had a reduced ability to release histamine when exposed to ovalbumin in vitro. Our findings support the proposal that PARP inhibitors could have a therapeutic potential to reduce chronic lung inflammation, airway damage and remodelling in severe unresponsive asthmatic patients.  相似文献   

9.
BCL2, originally identified as a proto‐oncogene in B‐cell lymphoma, is a key regulator of apoptosis. Although it is more than 200 kb in length, at least 70% of the t(14;18) translocation in follicular lymphomas occurs at the BCL2 major breakpoint region (mbr), located in the 3′‐untranslated region (3'‐UTR). We have previously found that the mbr is a regulatory element which positively regulates BCL2 expression and this regulatory function was closely associated with SATB1, which binds to a 37 bp mbr (37 mbr) in the 3′‐end of the mbr directly. However, the precise molecular mechanisms by which the mbr regulates gene expression are not fully understood. In this study, we purified Poly(ADP‐ribose) polymerase‐1 (PARP‐1) from the DNA–protein complexes formed by 37 mbr in Jurkat cells and demonstrated that PARP‐1 participates in the 37 mbr–protein complex's formation in vitro and in vivo. Functional analysis showed that overexpression of PARP‐1 decreases 37 mbr regulatory function and BCL2 expression. Conversely, knockdown of PARP‐1 with RNAi increases BCL2 expression. Taken together, the present findings indicate that PARP‐1 is a component of BCL2 37 mbr–protein complexes, and PARP‐1 is involved in the regulation of BCL2 expression. These findings are helpful in understanding the regulatory mechanisms of BCL2 expression. J. Cell. Biochem. 110: 1208–1218, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

10.
11.
Protein poly(ADP‐ribosyl)ation (PARylation) primarily catalyzed by poly(ADP‐ribose) polymerases (PARPs) plays a crucial role in controlling various cellular responses. However, PARylation targets and their functions remain largely elusive. Here, we deployed an Arabidopsis protein microarray coupled with in vitro PARylation assays to globally identify PARylation targets in plants. Consistent with the essential role of PARylation in plant immunity, the forkhead‐associated (FHA) domain protein DAWDLE (DDL), one of PARP2 targets, positively regulates plant defense to both adapted and non‐adapted pathogens. Arabidopsis PARP2 interacts with and PARylates DDL, which was enhanced upon treatment of bacterial flagellin. Mass spectrometry and mutagenesis analysis identified multiple PARylation sites of DDL by PARP2. Genetic complementation assays indicate that DDL PARylation is required for its function in plant immunity. In contrast, DDL PARylation appears to be dispensable for its previously reported function in plant development partially mediated by the regulation of microRNA biogenesis. Our study uncovers many previously unknown PARylation targets and points to the distinct functions of DDL in plant immunity and development mediated by protein PARylation and small RNA biogenesis, respectively.  相似文献   

12.
13.
14.
DNA双链断裂(double strand breaks,DSBs)是细胞最严重的DNA损伤形式。细胞通过同源重组(homologous recombination,HR)和非同源末端连接(non-homologous end joining,NHEJ)途径修复DNA双链断裂损伤。聚腺苷二磷酸核糖基化(poly(ADP-ribosyl)ation,PARylation)是蛋白质翻译后修饰过程,这个过程由聚腺苷二磷酸 核糖聚合酶家族(poly(ADP-ribose)polymerases,PARPs)催化完成。PARP1作为PARPs家族最重要的成员,其在DNA损伤应答方面发挥重要作用。研究显示,PARP1在DSBs修复过程中发挥关键作用,参与DSBs的早期应答反应及其具体修复途径,可依据KU蛋白的存在与否发挥不同的特定作用。本文较全面地综述了PARP1在DNA双链断裂修复方面的潜在作用,将为临床疾病的诊治提供新的思路。  相似文献   

15.
The deterioration of seeds during prolonged storage results in a reduction of viability and germination rate. DNA damage is one of the major cellular defects associated with seed deterioration. It is provoked by the formation of reactive oxygen species (ROS) even in the quiescent state of the desiccated seed. In contrast to other stages of seed life, DNA repair during storage is hindered through the low seed water content; thereby DNA lesions can accumulate. To allow subsequent seedling development, DNA repair has thus to be initiated immediately upon imbibition. Poly(ADP‐ribose) polymerases (PARPs) are important components in the DNA damage response in humans. Arabidopsis thaliana contains three homologues to the human HsPARP1 protein. Of these three, only AtPARP3 was very highly expressed in seeds. Histochemical GUS staining of embryos and endosperm layers revealed strong promoter activity of AtPARP3 during all steps of germination. This coincided with high ROS activity and indicated a role of the nuclear‐localised AtPARP3 in DNA repair during germination. Accordingly, stored parp3‐1 mutant seeds lacking AtPARP3 expression displayed a delay in germination as compared to Col‐0 wild‐type seeds. A controlled deterioration test showed that the mutant seeds were hypersensitive to unfavourable storage conditions. The results demonstrate that AtPARP3 is an important component of seed storability and viability.  相似文献   

16.
The HERV‐W family of human endogenous retroviruses represents a group of numerous sequences that show close similarity in genetic composition. It has been documented that some members of HERV‐W–derived expression products are supposed to play significant role in humans' pathology, such as multiple sclerosis or schizophrenia. Other members of the family are necessary to orchestrate physiological processes (eg, ERVWE1 coding syncytin‐1 that is engaged in syncytiotrophoblast formation). Therefore, an assay that would allow the recognition of particular form of HERV‐W members is highly desirable. A peptide nucleic acid (PNA)–mediated technique for the discrimination between multiple sclerosis‐associated retrovirus and ERVWE1 sequence has been developed. The assay uses a PNA probe that, being fully complementary to the ERVWE1 but not to multiple sclerosis‐associated retrovirus (MSRV) template, shows high selective potential. Single‐stranded DNA binding protein facilitates the PNA‐mediated, sequence‐specific formation of strand invasion complex and, consequently, local DNA unwinding. The target DNA may be then excluded from further analysis in any downstream process such as single‐stranded DNA‐specific exonuclease action. Finally, the reaction conditions have been optimized, and several PNA probes that are targeted toward distinct loci along whole HERV‐W env sequences have been evaluated. We believe that PNA/single‐stranded DNA binding protein–based application has the potential to selectively discriminate particular HERV‐W molecules as they are at least suspected to play pathogenic role in a broad range of medical conditions, from psycho‐neurologic disorders (multiple sclerosis and schizophrenia) and cancers (breast cancer) to that of an auto‐immunologic background (psoriasis and lupus erythematosus).  相似文献   

17.
An essential mechanism for repairing DNA double‐strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single‐stranded DNA, promoting DNA‐strand exchange. Here, we study the interaction of hRAD51 with single‐stranded DNA using a single‐molecule approach. We show that ATP‐bound hRAD51 filaments can exist in two different states with different contour lengths and with a free‐energy difference of ~4 kBT per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly‐competent ADP‐bound configuration. In agreement with the single‐molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51‐ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51‐ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange.  相似文献   

18.
19.
The Mre11–Rad50 nuclease–ATPase is an evolutionarily conserved multifunctional DNA double‐strand break (DSB) repair factor. Mre11–Rad50's mechanism in the processing, tethering, and signaling of DSBs is unclear, in part because we lack a structural framework for its interaction with DNA in different functional states. We determined the crystal structure of Thermotoga maritima Rad50NBD (nucleotide‐binding domain) in complex with Mre11HLH (helix‐loop‐helix domain), AMPPNP, and double‐stranded DNA. DNA binds between both coiled‐coil domains of the Rad50 dimer with main interactions to a strand‐loop‐helix motif on the NBD. Our analysis suggests that this motif on Rad50 does not directly recognize DNA ends and binds internal sites on DNA. Functional studies reveal that DNA binding to Rad50 is not critical for DNA double‐strand break repair but is important for telomere maintenance. In summary, we provide a structural framework for DNA binding to Rad50 in the ATP‐bound state.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号