首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Introduction – Dehydrocavidine is a major component of Corydalis saxicola Bunting with sedative, analgesic, anticonvulsive and antibacterial activities. Conventional methods have disadvantages in extracting, separating and purifying dehydrocavidine from C. saxicola. Hence, an efficient method should be established. Objective – To develop a suitable preparative method in order to isolate dehydrocavidine from a complex C. saxicola extract by preparative HSCCC. Methodology – The methanol extract of C. saxicola was prepared by optimised microwave‐assisted extraction (MAE). The analytical HSCCC was used for the exploration of suitable solvent systems and the preparative HSCCC was used for larger scale separation and purification. Dehydrocavidine was analysed by high‐performance liquid chromatography (HPLC) and further identified by ESI‐MS and 1H NMR. Results – The optimised MAE experimental conditions were as follows: extraction temperature, 60°C; ratio of liquid to solid, 20; extraction time, 15 min; and microwave power, 700 W. In less than 4 h, 42.1 mg of dehydrocavidine (98.9% purity) was obtained from 900 mg crude extract in a one‐step separation, using a two‐phase solvent system composed of chloroform–methanol–0.3 m hydrochloric acid (4 : 0.5 : 2, v/v/v). Conclusion – Microwave‐assisted extraction coupled with high‐speed counter‐current chromatography is a powerful tool for extraction, separation and purification of dehydrocavidine from C. saxicola. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Introduction – Artemisia rupestris L. is a well‐known traditional Chinese medicinal plant in Xinjiang. Rupestonic acid is the main active ingredient of A. rupestris L., and has been chosen as a ‘marker compound’ for the chemical evaluation or quality control of A. rupestris L. and its products. Although HSCCC separation method was developed before, the separation was performed with two steps using the same solvent system, which were time‐consuming and waste of the solvents. Objective – To develop a simple HSCCC method for the separation and purification of rupestonic acid in a single run. Methodology – The measurement of partition coefficient (K) was introduced to select the two‐phase solvent system. The simple HSCCC method was established according to the selected solvent system for separation and purification of rupestonic acid. The purity of target compound was test by HPLC and the structure was identified by MS, 1H NMR and 13C NMR. Results – A total of 72.3 mg of rupestonic acid and 53.5 mg of chrysosptertin B with over 95% purity were yielded from 500 mg extracts of Artemisia rupestris L. in one‐step separation. Conclusion – The rupestonic acid was separated in a single run by HSCCC. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Introduction – Flavonoids, the primary constituents of the petals of Nelumbo nucifera, are known to have antioxidant properties and antibacterial bioactivities. However, efficient methods for the preparative isolation and purification of flavonoids from this plant are not currently available. Objective – To develop an efficient method for the preparative isolation and purification of flavonoids from the petals of N. nucifera by high‐speed counter‐current chromatography (HSCCC). Methodology – Following an initial clean‐up step on a polyamide column, HSCCC was utilised to separate and purify flavonoids. Purities and identities of the isolated compounds were established by HPLC‐PAD, ESI‐MS, 1H‐NMR and 13C‐NMR. Results – The separation was performed using a two‐phase solvent system composed of ethyl acetate–methanol–water–acetic acid (4 : 1 : 5 : 0.1, by volume), in which the upper phase was used as the stationary phase and the lower phase was used as the mobile phase at a flow‐rate of 1.0 mL/min in the head‐to‐tail elution mode. Ultimately, 5.0 mg syringetin‐3‐O‐β‐d‐glucoside, 6.5 mg quercetin‐3‐O‐β‐d‐glucoside, 12.8 mg isorhamnetin‐3‐O‐β‐d‐glucoside and 32.5 mg kaempferol‐3‐O‐β‐d‐glucoside were obtained from 125 mg crude sample. Conclusion – The combination of HSCCC with a polyamide column is an efficient method for the preparative separation and purification of flavonoids from the petals of N. nucifera. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Peng J  Dong F  Qi Y  Han X  Xu Y  Xu L  Xu Q  Liu K  Zhu Z 《Phytochemical analysis : PCA》2008,19(3):212-217
Four triterpene saponins, including astragaloside IV, astragaloside II, astragaloside I and acetylastragaloside I, were successfully isolated and separated by high-speed counter-current chromatography coupled with evaporative light scattering detection from Radix Astragali using stepwise elution with a pair of solvent systems composed of n-hexane:ethyl acetate:ethanol:water in volume ratios of 1:0.6:0.6:1 and 1:1:1:1 (by volume). The isolation produced 26.5 mg astragaloside IV, 28.2 mg astragaloside II, 48.7 mg astragaloside I and 17.6 mg acetylastragaloside I with purities of 97.6, 96.4, 98.8 and 96.8%, respectively, determined by high-performance liquid chromatography from 250 mg crude extract. The chemical structures of the isolated compounds were identified by UV, NMR and MS, and confirmed by authentic standards.  相似文献   

9.
The bioactive component harpagoside was successfully separated from the crude extract of Scrophularia ningpoensis Hemsley by one-step purification using high-speed counter-current chromatography (HSCCC). A two-phase solvent system containing n-butanol:ethyl acetate:water (1:9:10) was selected following consideration of the partition coefficient of the target compound. A 276 mg quantity of the crude extract was loaded onto a 250 mL HSCCC column and yielded 11 mg harpagoside at over 97% purity. The chemical structure of harpagoside was determined by HPLC-ESI/MS and 1H-NMR.  相似文献   

10.
Two dicaffeoylquinic acids, namely 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid, have been successfully separated by high-speed counter-current chromatography (HSCCC) from an extract of Ainsliaea fragrans Champ, followed by an initial clean-up step using AB-8 resin. A two-phase solvent system composed of chloroform:methanol:water (8:8:4) was selected for the isolation with the aqueous-rich phase as the stationary phase and the organic-rich phase as the mobile phase. The developed HSCCC method yielded 34 mg of 3,5-dicaffeoylquinic acid and 17 mg of 4,5-dicaffeoylquinic acid from 150 mg of the crude sample in a one-step separation with purities of 98 and 95%, respectively, as determined by HPLC. The structures of the two compounds were identified from ESI/MS, (1)H- and (13)C-NMR spectroscopic data.  相似文献   

11.
12.
13.
Aconitum coreanum (Lèvl.) Rapaics (Guanbaifu in Chinese) is a widely used, centuries-old Chinese herb. A preparative high-speed counter-current chromatography (HSCCC) coupled with evaporative light scattering detection (ELSD) method was employed for isolation and purification of alkaloids from the crude extract of Aconitum coreanum (Lèvl.) Rapaics using ethyl acetate-n-butanol-methanol-0.2 m HCl (7:2:2:7, v/v) as a two-phase solvent system. Six alkaloids, including GFO, GFQ, GFZ, hetisinone, hetisine and GFAA, were obtained in one-step separation. The purity of these compounds was 97.6, 93.8, 91.8, 91.9, 96.2 and 91.1%, respectively.  相似文献   

14.
The roots of Caulophyllum thalictroides, traditionally used for the treatment of menstrual difficulties and as an aid in childbirth, contain saponins, which are considered to be responsible for the uterine stimulant effects, together with teratogenic alkaloids. An HPLC method has been developed which permits the determination of the triterpene saponins in the plant and also the separation of four alkaloids. The best results were obtained with a C-12 stationary phase using ammonium acetate buffer (pH 8.0) and acetonitrile as mobile phase. Owing to their low UV absorbance, the saponins were detected by evaporative light scattering, whereas the alkaloids were monitored by UV at 310 nm. The identities of the compounds were confirmed in an LC-MS experiment. Different plant samples and commercial products have been analysed using the described method, and remarkable qualitative and quantitative variations were revealed. Comparing the daily uptake of total saponins, a difference of greater than 100-fold was observed within the various products; the alkaloid content on the other hand was more uniform.  相似文献   

15.
16.
Introduction – Centrifugal partition chromatography (CPC), as a continuous liquid–liquid partition chromatography with no solid support matrix, combined with evaporative light scattering detection (ELSD) was employed for systematic separation and purification of weak‐chromophoric saponins from a highly valued and important traditional Chinese herbal medicine, Panax notoginseng. Objective – To separate and isolate high‐purity saponins from extract of Panax notoginseng using CPC‐ELSD with a simple and low toxicity solvent system. Methodology – Samples were preparaed by extracting the root material with acetone, treated with n‐butanol and then freeze‐dried. CPC‐ELSD was applied in the separation and detection of notoginsenoside and ginsenosides from extract of Panax notoginseng using a solvent system composed of ethyl acetate–n‐butanol–water (1:1:2, v/v/v). The saponins were analysed and identified by their retention time with high‐performance liquid chromatography (HPLC) coupled with ELSD, as well as electrospray ionisation tandem mass spectrometry (ESI‐MSn ) in the negative and positive ion modes with the authentic standards. Results – A total of 9.6 mg of notoginsenoside R1, 67.8 mg of ginsenoside Rg1, 2.3 mg of Re and 286.5 mg of Rb1 were purified from 487.2 mg of n‐butanol extract of P. notoginseng. The purities of obtained saponins in a single run were assessed to be over 98% by HPLC‐ELSD. Conclusion – CPC‐ELSD was proved to be a very fast and efficient tool for separation of high‐purity dammarane saponins. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Introduction –  A methanolic extract from Gentianella amarella ssp. acuta was shown to contain several xanthones exhibiting acetylcholinesterase inhibitory activity. These xanthones were difficult to separate by conventional LC techniques, which prevented the isolation of pure compounds in sufficient amounts to perform in‐depth biological testing. Objective –  To develop a suitable preparative method for the separation of closely related xanthones. Methodology –  The methanolic extract was first partitioned with solvents of increasing polarity, in order to separate glycosides from xanthone aglycones. High‐speed countercurrent chromatography (HSCCC) methods were then optimised for the fractionation of both polar and non‐polar extracts. Results –  The use of HSCCC enabled the separation of xanthones which co‐eluted by HPLC. Ten closely related xanthones—three of which were isomeric—were successfully isolated by developing suitable solvent systems. All compounds were obtained in sufficient amounts to allow further biological assays (e.g. up to 250 mg), including even minor compounds that were not detectable by analytical HPLC. Conclusion –  The orthogonality of HSCCC with HPLC and the absence of solid‐phase supports enabled the detection, separation and preparative isolation of closely related compounds which were difficult to resolve by other techniques. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Z-Ligustilide was separated and purified from the traditional Chinese medicinal plant Angelica sinensis by high-speed counter-current chromatography (HSCCC). Analytical HSCCC was first used for the systematic selection of the two-phase solvent system. Preparative HSCCC separation was performed with a two-phase solvent system composed of petroleum ether (60-90 degrees C)-ethanol-water at an optimum volume ratio of 10:17:10 (v/v). A total of 38 mg Z-ligustilide at 98.8% purity was obtained in one step from 200 mg crude extract as determined by HPLC analysis. The structure of the target compound was identified by electron impact ionisation mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号