首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upon exposure of rabbit muscle creatine kinase (ATP: creatine N-phosphotransferase, EC 2.7.3.2) that has been dansylated at the two reactive lysines to 8 M urea, the maximum emission of the extrinsic fluorophore shifts 4 nm towards the blue, this being accompanied by a small decrease in intensity. The fluorescence emission and excitation spectra of the reassembled and native proteins are the same. Denaturation is accompanied by a rapid decrease in fluorescence which is complete in 10 s. This suggests that denaturation is accompanied by an early disorganization at the catalytic center, where the reactive lysines are located. Reassembly is associated with a rapid increase in dansyl fluorescence followed by a slower decrease that is complete in 6 min. Since reactivation is not complete until 20 min, minor additional structural changes are needed for the reacquisition of catalytic activity. The intrinsic protein fluorescence (eight tryptophans per dimer) of dansylated creatine kinase is approximately 60% less than that of the unlabelled enzyme, which may be attributed to resonance energy transfer, indicating that the reactive lysine is located near one or more of the tryptophans. A more limited quenching of intrinsic fluorescence is observed when dansylated creatine kinase is exposed to 8 M urea. Reassembly, monitored by a decrease in intrinsic fluorescence, reveals that the dansylated protein achieves its final fluorescence after 18 min of renaturation compared with 30 min for unlabelled enzyme. The powerful quenching by the dansyl group may limit the ability to monitor changes in the tryptophan environment. Kinetics of fluorescence polarization changes during denaturation are consistent with a mechanism involving rapid dissociation, followed by a subunit disorganization and possible aggregation. Reassembly would appear to involve first a refolding of the disorganized monomers and subsequent association. These results correspond to our previous observations that subunit renaturation precedes dimerization.  相似文献   

2.
3.
The concentration of polyamines in red blood cells (RBCs) is considered to be an index of cell proliferation. This index has been demonstrated to be of clinical importance for the follow-up and treatment of some cancer patients. The concentration of polyamines in RBCs is usually determined by high-performance liquid chromatography (HPLC) with fluorescence detection. In the current work, we present a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of putrescine, spermidine, and spermine, the three major polyamines in RBCs. The polyamines were dansylated and analyzed by an LC gradient of 20-min duration on a C18 column on-line with a tandem mass spectrometer. An internal standard (1,8-diaminooctane) was used for quantification. This method exhibited excellent linearity for the three polyamines with regression coefficients higher than 0.99. The limits of detection for putrescine, spermidine, and spermine were 0.10, 0.75, and 0.50 pmol/ml, respectively. The intrarun precision values for putrescine, spermidine, and spermine all were better than 10%, and the interrun precision values were 13%, 9%, and 20%, respectively. The LC-MS/MS method is sufficiently simple and reliable enough to replace the currently used HPLC method with fluorescence detection in which putrescine is not always detectable.  相似文献   

4.
Quantitative evaluation of the diffusion process of sodium fluorescein and dansylated amino acids in the salivary gland of the larvae of Drosophila hydei reveals that the differences in specific permeability between the junctional and nonjunctional membranes, as found for small ions, do not apply to the fluorescent probes. There are no significant differences between the pemeability properties for the different dansylated amino acids tested, and the same properties are found for sodium fluorescein.  相似文献   

5.
We have synthesized a neurohypophyseal hormone analogue containing an extrinsic fluorescence probe by linking a dansyl (DNS) group to the epsilon-amino group of the lysine at residue 8 of vasotocin. The fluorescence properties of this analogue have been characterized by steady-state and time-resolved spectroscopic methods and compared with those of epsilon-DNS-lysine and the dansylated carboxyl terminal tripeptide Pro-Lys(DNS)-GlyNH2. The binding of this hormone analogue to purified isoforms of bovine neurophysins, the natural carrier proteins of the neurohypophyseal hormones, results in changes in several fluorescence parameters of the dansyl probe. These changes include an increase in intensity and average lifetime, a shift of the emission band to higher energies, and an increase in the emission anisotropy. Anisotropy changes have been used to determine dissociation constants for binding to these neurophysin isoforms. Based on the changes in the fluorescence properties of the dansyl probe, the dansyl group itself interacts with the protein. The degree of the dansyl-neurophysin interaction, however, appears to be different for the full sequence isoform of neurophysin I and the Val89 isoform of neurophysin II.  相似文献   

6.
The hapten binding properties of the homogeneous mouse IgM secreted by MOPC-104E were investigated. Hapten-association constants were determined either by equilibrium and displacement equilibrium dialysis or by fluorometric titrations of the protein with the fluorescent derivatives of the haptens. For the latter type of measurements, several oligosaccharides were derivatized to the corresponding dansylhydrazones. The synthesis, generally applicable to oligosaccharides with free reducing ends, is described. Analysis of the thermodynamic parameters for the binding of 18 haptens forms the basis for proposing a model of the binding site of MOPC-104E. This model is supported and refined by results of the measurements of linear and circular polarization of the fluorescence of the dansylated haptens. The binding site is proposed to consist of a cavity with about 12-A depth, complementary to a terminal nonreducing nigerosyl group. At the entrance to this cavity, a further subsite is identified forming interactions of lower specificity with an additional glucose unit.  相似文献   

7.
8.
Quantitative evaluation of the diffusion process of sodium fluorescein and dansylated amino acids in the salivary gland of the larvae of Drosophila hydei reveals that the differences in specific permeability between the junctional and nonjunctional membranes, as found for small ions, do not apply to the fluorescent probes. There are no significant differences between the permeability properties for the different dansylated amino acids tested, and the same properties are found for sodium fluorescein.  相似文献   

9.
Determination of polyamine pools is still a step impossible to circumvent in studies aimed at determining the pathophysiological role of natural polyamines. In addition, polyamine measurement in biological fluids and tissues may have clinical relevance, especially in cancer patients. Among the wide panel of analytical methods developed for the quantification of polyamines, high-performance liquid chromatographic (HPLC) separation of polyamines after derivatization with dansyl chloride remains the most commonly used method. In this work, we show that atmospheric pressure chemical ionization-mass spectrometry (MS) can be used to detect and quantify biologically relevant polyamines after dansylation, without chromatographic separation. Positive-ion mass spectra for each dansylated polyamine were generated after optimization by flow injection analysis (FIA). FIA coupled with MS detection by selected ion monitoring greatly increased the sensitivity of the polyamine detection. The method is linear over a wide range of polyamine concentrations and allows detection of quantities as low as 5 fmol. The FIA/MS method is about 50-fold more sensitive than the conventional HPLC/fluorimetry procedure. A good correlation (r>0.98) between these two methods was observed. The FIA/MS method notably reduces the time of analysis per sample to 1.5 min and turns out to be rapid, efficient, cost saving, reproducible, and sufficiently simple to allow its routine application.  相似文献   

10.
Fluorescence energy transfer from dehydroergosterol (DHE) to dansylated lecithin (DL) was used to characterize lecithin-cholesterol vesicles in the presence of the bile salt, sodium taurocholate. At lipid concentrations approximating physiological levels, exposure of fluorescently labeled vesicles to the bile salt led to a dose-dependent increase in the DHE-to-DL fluorescence ratio during the first 24 h after mixing. The initial changes in the fluorescence ratio correlated well with conventional turbidity measurements that quantify partial micellization of vesicles as a function of bile salt loading. In addition, fluorescence energy transfer from DHE to DL revealed cholesterol enrichment of vesicles and re-vesiculation of micelles at bile salt loadings for which vesicles and micelles coexisted. Samples containing the cholesterol-enriched vesicle fraction exhibited further increases in the DHE-to-DL fluorescence ratio during a 4-week observation period but only after a significant lag period of several days. The lag period decreased with cholesterol loading, and the increase in the fluorescence ratio always preceded the appearance of microscopic, birefringent, either needlelike or platelike, cholesterol crystals, in samples that were initially supersaturated with cholesterol. Cholesterol crystals were not observed, and the fluorescence ratio did not increase, for any sample that was undersaturated with cholesterol.Taken together, these results suggest that the latter changes in fluorescence are the result of cholesterol nucleation. Fluorescence energy transfer from DHE to DL is therefore a promising technique for the characterization of model bile and, possibly, provides a direct measurement of cholesterol nucleation.  相似文献   

11.
Fang Q  Guo J  Peng YL  Chang M  He F  Chen Q  Wang R 《Peptides》2006,27(6):1297-1304
To further evaluate the importance of C-terminal modification of neuropeptide FF (NPFF), in the present work, four dansylated NPFF analogues, including two putative agonists (dansyl-PQRFamide and dansyl-GSRFamide) and two putative antagonists (dansyl-PQRamide and dansyl-GSRamide), were synthesized and investigated to address their potencies and efficacies in a series of in vitro and in vivo assays. (1) In the isolated mouse colon bioassay, the four dansylated compounds showed agonistic profiles: both dansyl-GSRFamide (1-10 microM) and dansyl-GSRamide (1-10 microM) dose-dependently caused colonic contractions, which were attenuated by pretreatment with BIBP3226; dansyl-PQRFamide and dansyl-PQRamide evoked modest colonic contractions at a high dose of 50 microM. (2) In urethane-anaesthetized rats, both dansyl-PQRFamide (50-300 nmol/kg, i.v.) and dansyl-GSRFamide (15-50 nmol/kg, i.v.) dose-dependently increased the mean arterial pressure and heart rate in a manner similar to NPFF (50-300 nmol/kg, i.v.); on the contrary, the two putative antagonists (100-800 nmol/kg, i.v.) decreased blood pressure in a dose-dependent manner. All the results suggest that dansyl-PQRFamide and dansyl-GSRFamide are NPFF full agonists; in contrast, dansyl-GSRamide and dansyl-PQRamide behave as agonists in vitro and antagonists in vivo on NPFF receptors. The findings reveal that the C-terminal Phe might be a crucial residue to determine the efficacy. In addition, the novel analogue dansyl-GSRFamide may be developed as a highly potent agonist to investigate the NPFF system.  相似文献   

12.
Novel non-natural amino acids carrying a dansyl fluorescent group were designed, synthesized, and incorporated into various positions of streptavidin by using a CGGG four-base codon in an Escherichia coli in vitro translation system. 2,6-Dansyl-aminophenylalanine (2,6-dnsAF) was found to be incorporated into the protein more efficiently than 1,5-dansyl-lysine, 2,6-dansyl-lysine, and 1,5-dansyl-aminophenylalanine. Fluorescence measurements indicate that the position-specific incorporation of the 2,6-dnsAF is a useful technique to probe protein structures. These results also indicate that well-designed non-natural amino acids carrying relatively large side chains can be accepted as substrates of the translation system.  相似文献   

13.
Human serum albumin (HSA) has two primary binding sites for drug molecules. These sites selectively bind different dansylated amino acid compounds, which-due to their intrinsic fluorescence-have long been used as specific markers for the drug pockets on HSA. We present here the co-crystal structures of HSA in complex with six dansylated amino acids that are specific for either drug site 1 (dansyl-l-asparagine, dansyl-l-arginine, dansyl-l-glutamate) or drug site 2 (dansyl-l-norvaline, dansyl-l-phenylalanine, dansyl-l-sarcosine). Our results explain the structural basis of the site-specificity of different dansylated amino acids. They also show that fatty acid binding has only a modest effect on binding of dansylated amino acids to drug site 1 and identify the location of secondary binding sites.  相似文献   

14.
The hydroxyl groups of bile salts play a major role in determining their physical properties and physiologic behavior. To date, no fluorescent bile salt derivatives have been prepared which permit evaluation of the functional role of the steroid ring. We have prepared five fluorescent cholanoyl derivatives using a dansyl-ethylene diamine precursor linked to the sulfonyl group of taurine; N-(5-dimethylamino-1-naphthalenesulfonyl)-N'-(2-aminoethanesulf onyl)- ethylenediamine. The fluorescent dansyl-taurine was conjugated to the carboxyl group of free bile acids, enabling the labeling of the series: dehydrocholate, ursodeoxycholate, cholate, chenodeoxycholate and deoxycholate. Despite a systematic hydrophobic shift compared with the native bile salts (aqueous solubility and water:octanol partitioning), the influence of steroid ring hydroxylation was retained, with the dehydrocholate and cholate derivatives more water soluble than the dihydroxy derivatives. Similarly, the sequence of HPLC mobilities, reflecting relative hydrophilicity, was identical in the dansyl-taurine derivatives and the native taurine-conjugated bile salts. Cellular uptake of all five steroid derivatives was rapid, and partial inhibition of [3H]taurocholate uptake was observed in isolated hepatocytes. Rates of biliary excretion of the dansylated derivatives by the isolated perfused rat liver correlated closely with hydrophilicity. Collectively, these findings indicate that the influence of the hydroxyl groups is retained in this series of dansylated steroids, and that hydroxylation is a key determinant of their hepatocellular transport and biliary excretion. These fluorescent bile salt derivatives may thus serve as unique probes for investigating structure-function relationships in hepatic processing of steroid-based compounds.  相似文献   

15.
Surface plasmon resonance spectroscopy (SPR) was used to measure the adsorption kinetics and isotherms of dansylated amino acids onto surface-confined molecularly imprinted polymer films (MIP-Fs) and the corresponding non-imprinted polymer control films (NIP-Fs). The surface-confined polymer films were grafted from flat gold surfaces using atom transfer radical polymerization (ATRP). This approach allowed uniform nanothin films to be grown, thereby ensuring that the amino acids see a uniform surface during adsorption. N,N'-Didansyl-l-cystine (DDC) and didansyl-l-lysine (DDK) were used as the template molecules to form the MIP-Fs. Adsorption kinetics data were analyzed using single- and dual-site Langmuir adsorption models. It was found that, within the experimental measurement range, adsorption isotherm data were well described by any of four isotherm models: Langmuir, dual-site Langmuir, Freundlich, or Langmuir-Freundlich (LF). The relatively high heterogeneity index values regressed using the Freundlich and LF isotherms suggest the formation of fairly homogeneous MIP-Fs; although Scatchard analysis reveals binding site heterogeneity does exist. Selectivity studies showed that the MIP-Fs display cross-reactivity between DDC and DDK; nevertheless, MIP-Fs prepared against one template showed selectivity for that template. Solution pH and polymer layer thickness were studied as independent parameters to determine their impacts on amino acid adsorption, as monitored by SPR.  相似文献   

16.
The determination of neurotransmitters (NTs) and their metabolites facilitates better understanding of complex neurobiology in the central nervous system disorders and has expanding uses in many other fields. We present a liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS/MS) method for the quantification of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), norepinephrine (NE), vanillymandelic acid (VMA), 3-methoxy-4-hydroxy phenylglycol (MHPG), 5-hydroxytryptamine (5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA), glutamate (Glu), and γ-aminobutyric acid (GABA). The NTs and their metabolites were dansylated and analyzed by an LC gradient on a C18 column on-line with a tandem mass spectrometer. This method exhibited excellent linearity for all of the analytes with regression coefficients higher than 0.99. The lower limit of quantification (LLOQ) values for DA, DOPAC, HVA, NE, VMA, MHPG, 5-HT, 5-HIAA, Glu, and GABA were 0.57, 0.37, 0.35, 0.40, 0.35, 0.91, 0.27, 0.43, 0.65, and 1.62 pmol/ml, respectively. The precision results were expressed as coefficients of variation (CVs), ranging from 1.5% to 13.6% for intraassay and from 2.9% to 13.7% for the interassay. This novel LC-ESI/MS/MS approach is precise, highly sensitive, specific, and sufficiently simple. It can provide an alternative method for the quantification of the NTs and their metabolites in human plasma.  相似文献   

17.
18.
Polyamides that are structural analogues of the naturally occurring DNA minor groove binding antibiotic distamycin (Dst) are promising candidates as gene modulators. Developing strategies for the large scale screening and monitoring of the cellular distribution of such ligands would aid the faster discovery of molecules, which would have eventual utility in molecular biology and medicine. Attachment of fluorescent tags would be a useful step towards this end. A fundamental question in this connection is whether the tag modifies the DNA binding affinity of the parent compounds. Towards answering this question, we have developed two oligopeptides that bear the dansyl (N, N-dimethylaminonaphthalene sulfonamido fluorophore) coupled directly to the N-terminus of the conjugated N-methylpyrrole carboxamide network, and possess three or four N-methyl pyrrole carboxamide units (abbreviated as Dn3 and Dn4 respectively). DNA binding abilities of these molecules were assessed from fluorescence titration experiments, duplex-DNA T(m) analysis (employing both UV and fluorescence spectroscopy), induced circular dichroism measurements (ICD), salt dependence of ICD and apparent binding constant measurements (K(app)) employing ethidium bromide (EtBr) displacement assay. Both these molecules reported DNA binding in the form of an enhanced fluorescence emission. As judged from the ICD measurements, salt dependence of ICD, T(m) analysis and K(app) measurements, the binding affinities of the molecules that possessed dansyl group at their N-termini were lower than the ones with equivalent number of amide units, but possessed N-methylpyrrole carboxamide unit at their N- termini. These results would have implications in the future design of fluorescent polyamides.  相似文献   

19.
W E Harris 《Biochemistry》1985,24(12):2873-2883
The fluorescent probe 8-(dimethylamino)naphthalene-1-sulfonylphosphatidylserine (Dns-PS) was incorporated into purified lamb kidney Na+- and K+-stimulated adenosinetriphosphatase (EC 3.6.1.3) [(Na+,K+)-ATPase] by using a purified phospholipid exchange protein. Phospholipase C was used to reduce phospholipid content. Up to 40% of the phospholipid could be hydrolyzed with only 10% inhibition of the (Na+,K+)-ATPase, but when 67% of the phospholipid was hydrolyzed, the enzyme was inhibited 53%. To examine the effect of protein on the phospholipid bilayer, the fluorescent parameters of the probe incorporated into the enzyme preparation were contrasted with the same parameters for the probe incorporated into the total lipid extract of the preparation. The polarization of fluorescence of the probe in the lipid extract was 0.118 while in the enzyme preparation it was 0.218. This reflected a decrease in fluidity of the glycerol region of the phospholipid bilayer which was mediated by the protein. This effect increased as the phospholipid content of the (Na+,K+)-ATPase preparation was reduced so that with maximal phospholipid reduction the polarization of fluorescence was 0.262. The protein caused a decrease in the transition temperature from gel to fluid states of the bilayer detected by polarization of the probe. The midpoint temperature transition of the enzyme preparation decreased from 33 degrees C when all phospholipids were present to 20 degrees C when 67% of the phospholipids were hydrolyzed. This decrease was not observed for the lipid extract of these samples. A direct correlation between the (Na+,K+)-ATPase specific activity and the polarization of fluorescence of Dns-PS was found. The reduction in phospholipid content did not affect the steady-state level of phosphorylation of the enzyme by ATP but did affect the rate of dephosphorylation which would require conformational changes of the enzymes. The data showed that the fluidity of the phospholipid bilayer can modulate the activity of the (Na+,K+)-ATPase.  相似文献   

20.
Initiation factor 3 (IF-3) has been labelled using dansyl (1-dimethylaminonaphthalene-5-sulphonyl) chloride under conditions designed to preserve the biological activity of the factor. The sites of modification of the IF-3 have been determined by peptide mapping and sequencing: about six lysines (73, 80, 91, 96, 99, 112) react in various proportions. However, if an IF-3 molecule bears more than one dansyl group on average then its activity is lost. The extent of incorporation is proportional to the amount of dansyl chloride used in the reaction. Spectrofluorimetric analysis of the dansyl-IF-3 leads to the following conclusions. (a) The motion of the dansyl label does not change greatly upon binding to the 30-S subunit. (b) The label is not close enough to any tryptophan group of the ribosome in the 30-S-subunit . IF-3 complex to allow energy transfer. (c) The IF-3 chain is folded so as to bring the tyrosine groups close to the dansyl-binding sites. (d) The stoichiometry of the binding of IF-3 to 30-S ribosomal subunits is close to 1:1 and the binding constant is 2 x 10(7) M-1. IF-3 also binds non-covalently the fluorescent indicator 8-anilinonaphthalene 1-sulphonate (ANS) with an apparent binding constant of approximately 8000 M-1. An interaction between ANS and poly(A-U-G), both bound to IF-3, was demonstrated. Combining these results with those for dansyl-IF-3 leads to a model for the interaction between IF-3 and the 30-S subunit involving a combination of 'hydrophobic' and electrostatic attraction between the factor and ribosomal RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号