首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among 15 enzymes PFK decreased most during preservation at 4 degrees C for 6-8 weeks, and this was prevented by the addition of adenine and inosine, but not by adenine or inosine only. PFK inactivation in hemolysate was also prevented by ATP. In order to maintain low fragility, isotonic sucrose solution was newly devised. Maltose and lactose followed and mannitol was also effective. The decrease in fragility accompanied the decrease in the cell volume and the increase of Na+, K+, H+ and Cl- in the medium. However, the filtrability of red cells was sometimes decreased in case of extremely lowered fragility. Therefore, appropriate ratios of isoosmotic sucrose (hardly permeable) and NaCl (relatively rapidly permeable) solutions must be selected for preservation of blood. Various properties in vitro of rabbit cells were well maintained and their posttransfusion viability was also prolonged when using this medium. Elimination of hypoxanthine could be achieved by hydron coated charcoal prior to transfusion.  相似文献   

2.
For a long period lactate was considered as a dead-end product of glycolysis in many cells and its accumulation correlated with acidosis and cellular and tissue damage. At present, the role of lactate in several physiological processes has been investigated based on its properties as an energy source, a signalling molecule and as essential for tissue repair. It is noteworthy that lactate accumulation alters glycolytic flux independently from medium acidification, thereby this compound can regulate glucose metabolism within cells. PFK (6-phosphofructo-1-kinase) is the key regulatory glycolytic enzyme which is regulated by diverse molecules and signals. PFK activity is directly correlated with cellular glucose consumption. The present study shows the property of lactate to down-regulate PFK activity in a specific manner which is not dependent on acidification of the medium. Lactate reduces the affinity of the enzyme for its substrates, ATP and fructose 6-phosphate, as well as reducing the affinity for ATP at its allosteric inhibitory site at the enzyme. Moreover, we demonstrated that lactate inhibits PFK favouring the dissociation of enzyme active tetramers into less active dimers. This effect can be prevented by tetramer-stabilizing conditions such as the presence of fructose 2,6-bisphosphate, the binding of PFK to f-actin and phosphorylation of the enzyme by protein kinase A. In conclusion, our results support evidence that lactate regulates the glycolytic flux through modulating PFK due to its effects on the enzyme quaternary structure.  相似文献   

3.
The tissue contents of previously known allosteric effectors of brain phosphofructokinase (EC 2.7.1.11) (PFK) and the kinetic behavior of isolated PFK were investigated during the initiation of rapid glycolytic flux in freeze-blown rat brain. Comparing 0- with 5-s brains revealed that there was a 4-fold drop in total tissue content of Fru-6-P and a 5.6-fold increase in Fru-1,6-P2 consistent with activation of PFK. Additionally, analysis of brain content showed a 15-fold increase in AMP, a 3-fold decrease in ATP, a 3-fold decrease in Pi, and a 1.6-fold increase in NH4+. There was no change in Fru-2,6-P2, H+, citrate, or Glc-1,6-P2 or the kinetic profiles of isolated PFK for ATP inhibition or Fru-2,6-P2 activation. We concluded that the observed change in PFK activity could be accounted for only partially by changes in the concentrations of adenine nucleotides and other known effectors. High performance liquid chromatography fractions of extracts obtained from 5-s brains showed the activator with a mobility identical to ribose 1,5-P2 and gave 2 nmol/g (wet weight) at 0 s, 10 nmol/g at 5 s, and 2 nmol/g at 20 s. Assay of PFK in the presence of effectors determined to be in tissue at 5 s showed that addition of 10 nmol/ml ribose 1,5-P2 gave a 4-fold activation of PFK. Based on the rapidity of its formation, its potency of activation, and its similarity in chemical properties to authentic ribose 1,5-P2, we conclude that ribose 1,5-P2 served as the initial activator of PFK in brain.  相似文献   

4.
The cellular distribution of free and bound glycolytic enzymes in vivo was estimated by means of a model based on previously determined association constants for individual binding interactions and in vivo protein concentrations. The calculations revealed that a significant proportion of the enzymes would be either associated with F-actin, or bound in binary enzyme-enzyme complexes in vivo. An analysis of the relative concentration, and relative activity, of F-actin-bound enzymes suggested that a complete glycolytic complex, composed of all enzymatic steps from phosphofructokinase (PFK) to lactate dehydrogenase (LDH) does not exist. This was indicated by a very low concentration of F-actin-associated phosphoglycerate kinase (PGK) and by a very low activity of F-actin bound aldolase and PGK; this model showed that aldolase and PGK would be absent from any F-actin bound complex. An analysis of soluble enzyme-enzyme associations indicated that formation of binary enzyme complexes may lead to an increased overall flux through glyceraldehyde 3-phosphate dehydrogenase and LDH, but would serve to decrease flux through PFK and aldolase. A 1.4-fold activation of PFK, which occurs when the soluble enzyme binds to F-actin, suggested that reversible binding of PFK to F-actin may represent a novel cellular mechanism for controlling glycolytic flux during periods of increased metabolic demand by controlling the key regulatory enzyme of glycolysis.  相似文献   

5.
This study evaluated whether indicators of metabolic capacity of cod white muscle differ along the length of the body, whether this variation persists over a large range of body sizes, and whether the allometry of metabolic capacities is similar along the length of the body. We examined the maximal activities of two glycolytic enzymes, phosphofructokinase (PFK) and lactate dehydrogenase (LDH), a mitochondrial enzyme, cytochrome C oxidase (CCO), and the biosynthetic enzyme nucleotide diphosphate kinase (NDPK). All enzymes examined showed significant size dependence, which was generally apparent in all regions. The activity of glycolytic enzymes increased with size, whereas that of CCO and NDPK decreased with size. For PFK and LDH, the size dependence decreased caudally, whereas for CCO and NDPK it was strongest in the caudal sample. For each size range, the activities of PFK, LDH, and CCO were higher in the last third of the body than in the middle or just behind the head. In contrast, NDPK activity was higher just behind the head than at the middle or in the last third of the body, suggesting that nuclear proliferation is more rapid in this zone. The high capacity for adenosine triphosphate (ATP) generation in the caudal region suggests that increases in mass-specific ATP output are advantageous in this relatively thin section of the body.  相似文献   

6.
The development of the activities of oxidative (COX, CS), glycolytic (PFK, PK, LDH) and muscle enzymes (CK, MK, Pase) was studied in representatives of the families Coregonidae, Salmonidae and Cyprinidae, from hatching to an age of approximately 100 days. In addition, the activities of two enzymes of amino acid metabolism (GOT, GPT) were followed in rainbow trout and in roach.
Water content of fresh body weight and protein content of dry body weight decrease during the early larval period. Specific activities of the two oxidative enzymes decline, whereas those of glycolytic and muscle enzymes increase in all species.
A family-specific event is the enormous increase in glycolytic and muscle enzymes from very low values in the early larva to very high levels in adult Coregonus sp. In rainbow trout, CS activity begins with a low-level period lasting throughout the yolk-sac period, whereas in the other species CS activity is high immediately after hatching.
Acclimation to either 15 or 20° C has no effect on the mass-specific activities of PFK, M K, CK and Pase in roach and chub, but the former three enzymes appear to be strongly dependent on rearing conditions during the early larval period, whereas Pase is not.  相似文献   

7.
Koebmann B  Solem C  Jensen PR 《The FEBS journal》2005,272(9):2292-2303
In Lactococcus lactis the enzymes phosphofructokinase (PFK), pyruvate kinase (PK) and lactate dehydrogenase (LDH) are uniquely encoded in the las operon. We used metabolic control analysis to study the role of this organization. Earlier studies have shown that, at wild-type levels, LDH has no control over glycolysis and growth rate, but high negative control over formate production (C(Jformate)LDH=-1.3). We found that PFK and PK exert no control over glycolysis and growth rate at wild-type enzyme levels but both enzymes exert strong positive control on the glycolytic flux at reduced activities. PK exerts high positive control over formate (C(Jformate)PK=0.9-1.1) and acetate production (C(Jacetate)PK=0.8-1.0), whereas PFK exerts no control over these fluxes at increased expression. Decreased expression of the entire las operon resulted in a strong decrease in the growth rate and glycolytic flux; at 53% expression of the las operon glycolytic flux was reduced to 44% and the flux control coefficient increased towards 3. Increased las expression resulted in a slight decrease in the glycolytic flux. At wild-type levels, control was close to zero on both glycolysis and the pyruvate branches. The sum of control coefficients for the three enzymes individually was comparable with the control coefficient found for the entire operon; the strong positive control exerted by PK almost cancels out the negative control exerted by LDH on formate production. Our analysis suggests that coregulation of PFK and PK provides a very efficient way to regulate glycolysis, and coregulating PK and LDH allows cells to maintain homolactic fermentation during glycolysis regulation.  相似文献   

8.
Temperature effects on the kinetic properties of phosphofructokinase (PFK) purified from skeletal muscle of the golden-mantled ground squirrel, Spermophilus lateralis, were examined at 37 degrees C and 5 degrees C, values characteristic of body temperatures in euthermia vs. hibernation. The enzyme showed reduced sensitivity to all activators at 5 degrees C, the K(a) values for AMP, ADP, NH(4) (+) and F2,6P(2) were 3-11-fold higher at 5 degrees C than at 37 degrees C. Inhibition by citrate was not affected whereas phosphoenolpyruvate, ATP and urea became more potent inhibitors at low temperature. While typically considered an activator of PFK activity, inorganic phosphate performed as an inhibitor at 5 degrees C. Decreasing temperature alone causes the actions of inorganic phosphate to change from activation to inhibition. We found that K(m) values for ATP remained constant while V(max) dropped significantly upon the addition of phosphate. Phosphate inhibition at 5 degrees C was noncompetitive with respect to ATP and the K(i) was 0.15 +/- 0.01 mm (n = 4). The results indicate that PFK is less likely to be activated in cold torpid muscle; PFK is less sensitive to changing adenylate levels at the low temperatures characteristic of torpor, and PFK is clearly much less sensitive to biosynthetic signals. All of these characteristics of hibernator PFK would serve to reduce glycolytic rate and help to preserve carbohydrate reserves during torpor.  相似文献   

9.
The ability of brief hypothermic reperfusion (HtR) to restore hepatic energy metabolism following periods of cold hypoxic preservation was studied in isolated rat livers after storage times of 5, 10, and 24 h. In addition, investigations were performed on the effects of HtR used to restore liver oxidative metabolism in the middle of a prolonged (24 h) hypoxic preservation period. A histidine-lactobionate-raffinose solution was used for the initial cold portal flush in all groups. Results showed that cold hypoxia for either 5 or 10 h yielded livers capable of similar recoveries of ATP, energy charge, and total adenine nucleotides, but that HtR after 24 h cold preservation resulted in reduced regeneration of ATP, a lower energy charge, and a fall in tissue adenine nucleotides. When livers were stored for 24 h but subjected to brief HtR after either 5 or 10 h before return to hypoxic storage, improved recoveries of the energy metabolites were seen over those recorded after 24 h hypoxia alone. The fact that these improvements were not due to an improved supply of adenine nucleotide precursors was demonstrated by studying groups which were given HtR with perfusate containing precursors of adenine nucleotides (adenosine, adenine, and inosine) after 24 h cold hypoxia. These data are consistent with the hypothesis that poor metabolic recovery after long-term hepatic cold preservation results more from decreased mitochondrial oxidative phosphorylation than from a lack of precursors for adenine nucleotide resynthesis. In addition, restoring oxidative metabolism at hypothermia for brief periods can to some extent protect final metabolic status after prolonged storage.  相似文献   

10.
Summary Phosphofructokinase 2 (PFK 2) was isolated from mycelia of the citric-acid-accumulating fungus Aspergillus niger, and partially purified by Trisacryl-Blue chromatography and Mono Q fast protein liquid chromatography. The appearance of a 96/94-kDa double band correlated with PFK 2 activity during purification. Purified PFK 2 had a half-life of 240 min at 4° C. The enzyme exhibited Michaelis-Menten type kinetics with respect to its substrates fructose-6-phosphate and ATP, required inorgaic phosphate for activity, and was only weakly inhibited by phospho(enol)pyruvate, AMP and citrate. The enzyme activity was not influenced by incubating partially purified PFK 2 preparations with ATP, MG2+ and the catalytic subunit of bovine heart protein kinase, although such treatment phosphorylated the 96/94-kDa protein. Consistently, treatment with alkaline phosphatase had no effect on PFK 2 activity. Also, no influence on PFK 2 activity was observed when cell-free extracts (containing A. niger protein kinases) from either glucose or citrate-grown mycelia were incubated with ATP and Mg2+ alone. It is concluded that, in A. niger, regulation of PFK 2 by phosphorylation/dephosphorylation does not occur, and this is related to the development of high glycolytic flow and citrate accumulation under conditions of supplying high sugar concentrations. Correspondence to: C. P. Kubicek  相似文献   

11.
S M Khoja  M S Ardawi 《Biochimie》1992,74(11):989-993
Changes in the activity of 6-phosphofructo-1-kinase (PFK, EC 2.7.1.11) from the epithelial cells of rat small intestine during experimental hypothyroidism were studied. Hypothyroidism resulted in significant decreases in the plasma concentrations of total tri-iodothyronine, free tri-iodothyronine, total thyroxine, free thyroxine and insulin. These changes were associated with a significant increase in the plasma concentration of thyrotropin. The total activity and activity ratios (activity at 0.5 mM fructose 6-phosphate at pH 7.0/activity at pH 8.0 (v0.5/V)) of jejunal PFK of hypothyroid rats were significantly diminished as compared to control rats. PFK of hypothyroid rats was more sensitive to inhibition by ATP. The mucosal enzyme of both control and hypothyroid state was sensitive to stimulation by AMP and fructose 2,6-bisphosphate. It is concluded that during hypothyroidism the rate of glycolytic pathway in the small intestine is reduced as a result of a fall in glucose uptake, and the subsequent kinetic changes of PFK are primarily to maintain the concentrations of fructose 6-phosphate (and glucose 6-phosphate) during the reduced glycolytic flux. These changes in PFK activity may be caused by changes in plasma insulin concentrations, glucose utilization and fructose 2,6-bisphosphate concentrations.  相似文献   

12.
Reoxygenation of ischaemic, energy-depleted heart does not result in sufficiently rapid regeneration of normal adenine nucleotide concentrations for preservation of cardiac function and structure. Salvage of nucleoside as a mechanism for restoration of ATP in the post-ischaemic myocardium is limited by efflux of adenosine during ischaemia. Isolated cardiac myocytes have been used to establish the kinetics of uptake and salvage of adenosine and inosine, measuring the distribution of radioactive nucleoside incorporated into ATP, ADP and AMP. Maximum rates of catalysis of reactions on the salvage pathway, and of enzymes competing for substrates on the pathway, have been established in myocyte extracts. Myocytes have little capacity to salvage or catabolise inosine. Enzyme measurements indicate that salvage of adenosine should proceed at 7-8-times the rate exhibited by intact myocytes dependent upon extracellular adenosine as substrate. The data indicate that the rate of transport of adenosine is not determined by its metabolic utilization, but is the rate-limiting step in the salvage of adenosine.  相似文献   

13.
Erythrocytes in long-preserved blood are spherical, but when the cells are incubated with inosine and adenine, the resulting increase in ATP content is accompanied by a shape change of the cells to discoidal form via a crenated form. The cells incubated with adenine alone or with no addition remain almost unchanged in shape. When incubated with inosine alone, the elevation in ATP level is less than that with both inosine and adenine, and the cell shape remains unchanged or changes partially into a crenated form. These phenomena occur in the presence of EDTA as well as in the absence of serum protein in the media. The cell volumes are measured as packed cell volume after centrifugation, by means of a Coulter counter (model S), and by determination of the intercellular space by the use of131I-labeled bovine serum albumin. The results show that no alteration in cell volume occurs during the shape changes. Accordingly, the surface area of the cell must increase with increase in the ATP content. This suggests that both the lipid bimolecular layer and the undermembrane structure are altered during the shape change.  相似文献   

14.
Summary The involvement of phosphofructokinase (PFK) in glycolytic control was investigated in the marine peanut worm Sipunculus nudus. Different glycolytic rates prevailed at rest and during functional and environmental anaerobiosis: in active animals glycogen depletion was enhanced by a factor of 120; during hypoxic exposure the glycolytic flux increased only slightly. Determination of the mass action ratio (MAR) revealed PFK as a non-equilibrium enzyme in all three physiological situations. Duirng muscular activity the PFK reaction was shifted towards equilibrium; this might account for the observed increase in glycolytic rate under these conditions. PFK was purified from the body wall muscle of S. nudus. The enzyme was inhibited by physiological ATP concentrations and an acidic pH; adenosine monophosphate (AMP), inorganic phosphate (Pi), and fructose-2,6-bisphosphate (F-2,6-P2) served as activators. PFK activity, determined under simulated cellular conditions of rest and muscular work, agreed well with the glycolytic flux in the respective situations. However, under hypoxia PFK activity surpassed the glycolytic rate, indicating that PFK may not be rate-limiting under these conditions. The results suggest that glycolytic rate in S. nudus is mainly regulated by PFK during rest and activity. Under hypoxic conditions the regulatory function of PFK is less pronounced.Abbreviations ATP, ADP, AMP adenosine tri-, di-, monophosphate - DTT dithiothreitol - EDTA ethylene diaminetetra-acetic acid - F-6-P fructose-6-phosphate - F-1,6-P2 fructose-1,6-bisphosphate - F-2,6-P2 fructose-2,6-bisphosphate; bwm, body wall muscle; fresh mass, total body weight - G-6-P glucose-6-phosphate - H enthalpy change - K a activation constant - K eq equilibrium constant - K i inhibition constant - K m Michaelis constant - MAR mass action ratio - NMR nuclear magnetic resonance - PFK phosphofructokinase - Pi inorganic phosphate - PLA phospho-l-arginine - SD standard deviation - TRIS, TRIS (hydroxymethyl) aminomethane - TRA triethanolamine hydrochloride - V max maximal velocity  相似文献   

15.
Activation of glycolysis by insulin in cultured rat hepatocytes is preceded by an activation of phosphofructokinase 2 (PFK 2) and subsequent rise of the fructose 2,6-bisphosphate [Fru(2,6)P2] level. Extracellular addition of ATP or puromycin prevented the hormonal effect on glycolysis. The mechanism through which the purines abolished glycolytic stimulation was investigated. 1. 50 microM ATP completely prevented the 3-5-fold insulin-dependent increase of glycolysis, irrespective of whether the cells initially possessed a low or a high Fru(2,6)P2 content. 50 microM puromycin prevented the stimulation of glycolysis by insulin only in cells whose initial Fru(2,6)P2 levels were low and had to be increased by insulin prior to the increase in glycolysis. It did not antagonize the action of insulin cells with initial high Fru(2,6)P2 content. 2. ATP exerted effects on its own; it decreased initially high Fru(2,6)P2 levels by 95% within 10 min and decreased the basal glycolytic rate by 60%. Half-maximal effects on the Fru(2,6)P2 level were obtained with about 25 microM ATP or 15 microM adenosine 5'[beta, gamma-methylene]triphosphate. ADP and adenosine-5-[gamma-thio]triphosphate were as effective as ATP, whereas 100 microM adenosine 5'[alpha, beta-methylene]triphosphate elicited no effect. Puromycin neither decreased high Fru(2,6)P2 levels nor inhibited basal glycolysis. 3. Extracellular ATP (100 microM) led to inhibition of the active form of PFK 2. Intracellular levels of Glc6P, citrate, ATP, ADP and AMP were increased by extracellular ATP, the phosphoenolpyruvate content was decreased, Fru6P and glycerol 3-phosphate levels stayed constant. Puromycin did not inhibit PFK 2. 4. Both puromycin and ATP prevented the insulin-dependent rise of the Fru(2,6)P2 level, they abolished the activation of PFK 2 by the hormone. Puromycin did not block the accumulation of Fru(2,6)P2 provoked by glucose addition; ATP also antagonized the glucose-dependent increase. 5. 100 microM ATP elevated the cAMP-dependent protein kinase activity ratio from 0.1 to 0.38 and increased the level of inositol trisphosphate by 16-fold within 5 min, whereas puromycin was without effect on either level. It is concluded that the two purines block the insulin effect on glycolysis by preventing the hormone increasing the Fru(2,6)P2 level. The mode of action, however, seems to be different: ATP antagonizes insulin action in that it leads to increased inhibition of PFK 2 whereas puromycin prevents the activation of PFK 2 by insulin.  相似文献   

16.
Anaerobic energy production is essential for the production of muscular tension when the demand for energy is greater than can be provided aerobically and when oxygen is in short supply. The largest source of anaerobic energy is from the glycolytic pathway. With sustained tetanic contractions, muscle glycolytic activity is high and hydrogen ions (H+) accumulate while tension production decreases. The increasing [H+] and decreasing tension led to the suggestion that H+ inhibits the activity of the regulatory glycolytic enzyme phosphofructokinase (PFK). Early in vitro work confirmed the H+ sensitivity of PFK in the test tube, indicating that little PFK activity should persist at a pH of 6.9-7.0. However, in situ and in vivo experiments suggested that significant PFK activity was maintained during intense contractions when muscle pH decreased to 6.4-6.6. There are several concerns associated with the application of in vitro findings to in vivo exercise situations: (i) there is little in vitro work in mammalian skeletal muscle with substrate and modulator concentrations representative of exercise, (ii) most in vitro analyses of PFK activity are performed following the dilution of the enzyme in mediums with low protein concentration, and (iii) do the modulators identified in vitro exist in high enough in vivo concentrations at rest and during exercise to contribute to the regulation of PFK? More recent in vitro and in situ PFK experiments have overcome some of these concerns. They confirm that during intense, short-term tetanic contractions, PFK activity is well matched to the ATP demand despite decreases in pH to approximately 6.4-6.5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A substrate cycle composed of phosphofructo 1-kinase I (PFK) and fructose 1,6 bisphosphatase I (FBPase) has been proposed in rat spermatids. This substrate cycle can explain the ability of glucose to induce a decrease in intracellular ATP, a phenomenon that was related to regulation of [Ca(2+)]i in these cells. In spite of the importance of this metabolic cycle, the expression and activities of the enzymes that compose such cycle have not been systematically studied in spermatogenic cells. Here, we show that PFK and FBPase activities were present in pachytene spermatocytes and round spermatids extracts. Expression of PFK at the mRNA and protein levels showed a relatively similar expression in spermatogenic cells, but a stronger expression in Sertoli cells. Instead, expression of FBPase at the mRNA and protein levels was stronger in round and elongating spermatids as compared to other spermatogenic cells. A similar pattern was observed when evidencing FBPase activity by a NADPH-nitroblue tetrazolium-linked cytochemical assay in isolated pachytene spermatocytes and round spermatids. Rat spermatids also showed the ability to convert lactate to fructose- and glucose-6-P, indicating that both glycolytic and gluconeogenic fluxes are present in these cells. Our results indicate that a coordinated expression of key substrate cycle enzymes, at the level of PFK/FBPase, appear in the last stages of spermatogenic cell differentiation, suggesting that the co-regulation of these enzymes are required for the ability of these cells to respond to glucose and induce metabolic and Ca(2+) signals that can be important for sperm development and function.  相似文献   

18.
Northern populations of Fundulus heteroclitus have twofold greater activity of lactate dehydrogenase-B (LDH-B) than southern populations, but exposure to stress increases LDH-B in southern populations, abolishing this difference. To test whether differences in the activity of other hepatic glycolytic enzymes between populations are sensitive to stress, we injected fish with a pharmacological dose of cortisol in coconut oil (400 microg g(-1)) or exposed them to handling stress and measured the activities of all the glycolytic enzymes. At rest, liver phosphofructokinase (PFK) and aldolase (ALD) activities were greater in southern fish, whereas LDH-B activity was greater in northern fish. No other glycolytic enzymes differed in activity between populations in control fish. Cortisol injection and handling stress decreased PFK and ALD and increased LDH activities in the southern but not the northern population, such that the populations no longer differed in the activity of any enzyme following treatment. Unlike Ldh-B mRNA, Pfk and Ald mRNA levels did not parallel enzyme activity, suggesting complex kinetics or regulation at multiple levels. Plasma cortisol did not differ between populations at rest but was significantly different between populations in treated fish. These data suggest that differences in liver enzyme activity may be related to differences in stress hormone physiology between populations.  相似文献   

19.
Li Y  Rivera D  Ru W  Gunasekera D  Kemp RG 《Biochemistry》1999,38(49):16407-16412
Earlier studies indicated an evolutionary relationship between bacterial and mammalian phosphofructo-1-kinases (PFKs) that suggests duplication, tandem fusion, and divergence of catalytic and effector binding sites of a prokaryotic ancestor to yield in eukaryotes a total of six organic ligand binding sites. The identities of residues involved in the four binding sites for allosteric ligands in mammalian PFK have been inferred from this assumed relationship. In the current study of the C isozyme of rabbit PFK, two arginine residues that can be aligned with important residues in the catalytic and allosteric binding sites of bacterial PFK and that are conserved in all eukaryotic PFKs were mutated. Arg-48 was suggested previously to be part of either the ATP inhibitory or the adenine nucleotide activating site. However, the mutant enzyme showed only slightly less sensitivity to ATP inhibition and was fully activatable by adenine nucleotides. On the other hand, sensitivity to citrate and 3-phosphoglycerate inhibition was lost, indicating an important role for Arg-48 in the binding of these allosteric effectors. Mutation of Arg-481, homologous to an active site residue in bacterial PFK, prevented binding and allosteric activation by fructose 2,6-bisphosphate. A new relationship between the allosteric sites of mammalian PFK and bacterial PFK is proposed.  相似文献   

20.
6-Phosphofructo-1-kinase (PFK) and aldolase are two sequential glycolytic enzymes that associate forming heterotetramers containing a dimer of each enzyme. Although free PFK dimers present a negligible activity, once associated to aldolase these dimers are as active as the fully active tetrameric conformation of the enzyme. Here we show that aldolase-associated PFK dimers are not inhibited by clotrimazole, an antifungal azole derivative proposed as an antineoplastic drug due to its inhibitory effects on PFK. In the presence of aldolase, PFK is not modulated by its allosteric activators, ADP and fructose-2,6-bisphosphate, but is still inhibited by citrate and lactate. The association between the two enzymes also results on the twofold stimulation of aldolase maximal velocity and affinity for its substrate. These results suggest that the association between PFK and aldolase confers catalytic advantage for both enzymes and may contribute to the channeling of the glycolytic metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号