首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The complete nucleotide sequence of lysU, the gene for the heat-inducible lysyl-tRNA synthetase of Escherichia coli, was determined and compared with the published sequence of lysS (herC), the gene for the constitutive lysyl-tRNA synthetase. These unlinked genes were found to be identical over 72% of their lengths. The deduced amino acid sequences of the respective gene products, LysU and LysS, were identical over 85% and similar over 92% of their lengths. Accumulation of high levels of LysU during growth of strains carrying the wild-type allele of lysU on multicopy plasmids had no observable effect on growth or on the synthesis of LysS. A lysU deletion strain was constructed and was shown to grow normally at low temperature (28 degrees C) but poorly at 44 degrees C; the slow growth (45% of normal) at elevated temperature was fully reversed by plasmids bearing wild-type lysU. The implications of these findings for the existence of two aminoacyl-tRNA synthetases for lysine are discussed.  相似文献   

2.
The size distribution of lysyl- and arginyl-tRNA synthetases in crude extracts from rat liver was re-examined by gel filtration. It is shown that irrespective of the addition or not of several proteinase inhibitors, lysyl-tRNA synthetase was present exclusively as a high-Mr entity, while arginyl-tRNA synthetase occurred as high- and low-Mr forms, in the constant proportions of 2:1, respectively. The polypeptide molecular weights of the arginyl-tRNA synthetase in these two forms were 74000 and 60000, respectively. The high-Mr forms of lysyl- and arginyl-tRNA synthetases were co-purified to yield a multienzyme complex, the polypeptide composition of which was virtually identical to that of the complexes from rabbit liver and from cultured Chinese hamster ovary cells. Of the nine aminoacyl-tRNA synthetases, specific for lysine, arginine, methionine, leucine, isoleucine, glutamine, glutamic and aspartic acids and proline, which characterize the purified complex, each, except prolyl-tRNA synthetase, was assigned to the constituent polypeptides by the protein-blotting procedure, using the previously characterized antibodies to the aminoacyl-tRNA synthetase components of the corresponding complex from sheep liver.  相似文献   

3.
4.
Lysine insertion during coded protein synthesis requires lysyl-tRNA(Lys), which is synthesized by lysyl-tRNA synthetase (LysRS). Two unrelated forms of LysRS are known: LysRS2, which is found in eukaryotes, most bacteria, and a few archaea, and LysRS1, which is found in most archaea and a few bacteria. To compare amino acid recognition between the two forms of LysRS, the effects of l-lysine analogues on aminoacylation were investigated. Both enzymes showed stereospecificity toward the l-enantiomer of lysine and discriminated against noncognate amino acids with different R-groups (arginine, ornithine). Lysine analogues containing substitutions at other positions were generally most effective as inhibitors of LysRS2. For example, the K(i) values for aminoacylation of S-(2-aminoethyl)-l-cysteine and l-lysinamide were over 180-fold lower with LysRS2 than with LysRS1. Of the other analogues tested, only gamma-aminobutyric acid showed a significantly higher K(i) for LysRS2 than LysRS1. These data indicate that the lysine-binding site is more open in LysRS2 than in LysRS1, in agreement with previous structural studies. The physiological significance of divergent amino acid recognition was reflected by the in vivo resistance to growth inhibition imparted by LysRS1 against S-(2-aminoethyl)-l-cysteine and LysRS2 against gamma-aminobutyric acid. These differences in resistance to naturally occurring noncognate amino acids suggest the distribution of LysRS1 and LysRS2 contributes to quality control during protein synthesis. In addition, the specific inhibition of LysRS1 indicates it is a potential drug target.  相似文献   

5.
Lee S  Son H  Lee J  Min K  Choi GJ  Kim JC  Lee YW 《Eukaryotic cell》2011,10(8):1043-1052
Acetyl coenzyme A (acetyl-CoA) is a crucial metabolite for energy metabolism and biosynthetic pathways and is produced in various cellular compartments with spatial and temporal precision. Our previous study on ATP citrate lyase (ACL) in Gibberella zeae revealed that ACL-dependent acetyl-CoA production is important for histone acetylation, especially in sexual development, but is not involved in lipid synthesis. In this study, we deleted additional acetyl-CoA synthetic genes, the acetyl-CoA synthetases (ACS genes ACS1 and ACS2), to identify alternative acetyl-CoA production mechanisms for ACL. The ACS1 deletion resulted in a defect in sexual development that was mainly due to a reduction in 1-palmitoyl-2-oleoyl-3-linoleoyl-rac-glycerol production, which is required for perithecium development and maturation. Another ACS coding gene, ACS2, has accessorial functions for ACS1 and has compensatory functions for ACL as a nuclear acetyl-CoA producer. This study showed that acetate is readily generated during the entire life cycle of G. zeae and has a pivotal role in fungal metabolism. Because ACSs are components of the pyruvate-acetaldehyde-acetate pathway, this fermentation process might have crucial roles in various physiological processes for filamentous fungi.  相似文献   

6.
Sixteen analogues of ATP have been tested in the aminoacylation reaction of threonyl-tRNA, lysyl-tRNA, and arginyl-tRNA synthetases from baker's yeast. Two compounds are substrates for threonyl-tRNA and for lysyl-tRNA synthetases and five compounds for arginyl-tRNA synthetase. There are six inhibitors for threonyl-tRNA, nine for lysyl-tRNA, and six for arginyl-tRNA synthetase. Their Km and Ki values have been determined. Thus positions 2, 6, 7, 8 and 9 of the purine moiety and 2' and 3' of the sugar moiety of the ATP molecule are important for catalytic action of these aminoacyl-tRNA synthetases. Remarkably arginyl-tRNA synthetase is the first aminoacyl-tRNA synthetase which tolerates bulky substituents at the sugar moiety of ATP. These data fit with the idea that synthetases of subunit structure need magnesium-ion-ATP complexes with an anti conformation as substrates whereas single-chain enzymes accept this substrate in the syn conformation.  相似文献   

7.
Monomethylamine methyltransferase of the archaeon Methanosarcina barkeri contains a rare amino acid, pyrrolysine, encoded by the termination codon UAG. Translation of this UAG requires the aminoacylation of the corresponding amber suppressor tRNAPyl. Previous studies reported that tRNAPyl could be aminoacylated by the synthetase-like protein PylS. We now show that tRNAPyl is efficiently aminoacylated in the presence of both the class I LysRS and class II LysRS of M. barkeri, but not by either enzyme acting alone or by PylS. In vitro studies show that both the class I and II LysRS enzymes must bind tRNAPyl in order for the aminoacylation reaction to proceed. Structural modeling and selective inhibition experiments indicate that the class I and II LysRSs form a ternary complex with tRNAPyl, with the aminoacylation activity residing in the class II enzyme.  相似文献   

8.
In the cytoplasm of higher eukaryotic cells, aminoacyl-tRNA synthetases (aaRSs) have polypeptide chain extensions appended to conventional prokaryotic-like synthetase domains. The supplementary domains, referred to as tRNA-interacting factors (tIFs), provide the core synthetases with potent tRNA-binding capacities, a functional requirement related to the low concentration of free tRNA prevailing in the cytoplasm of eukaryotic cells. Lysyl-tRNA synthetase is a component of the multi-tRNA synthetase complex. It exhibits a lysine-rich N-terminal polypeptide extension that increases its catalytic efficiency. The functional characterization of this new type of tRNA-interacting factor has been conducted. Here we describe the systematic substitution of the 13 lysine or arginine residues located within the general RNA-binding domain of hamster LysRS made of 70 residues. Our data show that three lysine and one arginine residues are major building blocks of the tRNA-binding site. Their mutation into alanine led to a reduced affinity for tRNA(3)(Lys) or minimalized tRNA mimicking the acceptor-TPsiC stem-loop of tRNA(3)(Lys) and a decrease in catalytic efficiency similar to that observed after a complete deletion of the N-terminal domain. Moreover, covalent continuity between the tRNA-binding and core domain is a prerequisite for providing LysRS with a tRNA binding capacity. Thus, our results suggest that the ability of LysRS to promote tRNA(Lys) networking during translation or to convey tRNA(3)(Lys) into the human immunodeficiency virus type 1 viral particles rests on the addition in evolution of this tRNA-interacting factor.  相似文献   

9.
The leucyl-tRNA and lysyl-tRNA synthetase components of the multienzyme complex from sheep liver were selectively dissociated by hydrophobic interaction chromatography on hexyl-agarose and purified to homogeneity. Conservation of activities during the purification required the presence of Triton X-100. The homogeneous enzymes corresponded to a monomer of Mr 129000 and a dimer of Mr 2 X 79000, respectively. Both were strongly adsorbed to the hydrophobic support phenyl-Sepharose, in conditions where the corresponding purified enzymes from yeast and Escherichia coli were not bound. Moreover, like the corresponding enzymes from yeast but unlike those of prokaryotic origin, the purified leucyl-tRNA and lysyl-tRNA synthetases derived from the complex displayed affinity for polyanionic supports. It is shown that proteolytic conversion of lysyl-tRNA synthetase to a fully active dimer of Mr 2 X 64000, leads to loss of both the hydrophobic and the polyanion-binding properties. These results support the view that each subunit of lysyl-tRNA synthetase is composed of a major catalytic domain, similar in size to the subunit of the prokaryotic enzyme, contiguous to a chain extension which carries both cationic charges and hydrophobic residues. The implications of these findings on the structural organization of the complex are discussed in relation to its other known properties.  相似文献   

10.
Aminoacyl-tRNA synthetases (aaRSs) are responsible for attaching amino acids to their cognate tRNAs during protein synthesis. In eukaryotes aaRSs are commonly found in multi-enzyme complexes, although the role of these complexes is still not completely clear. Associations between aaRSs have also been reported in archaea, including a complex between prolyl-(ProRS) and leucyl-tRNA synthetases (LeuRS) in Methanothermobacter thermautotrophicus that enhances tRNA(Pro) aminoacylation. Yeast two-hybrid screens suggested that lysyl-tRNA synthetase (LysRS) also associates with LeuRS in M. thermautotrophicus. Co-purification experiments confirmed that LeuRS, LysRS, and ProRS associate in cell-free extracts. LeuRS bound LysRS and ProRS with a comparable K(D) of about 0.3-0.9 microm, further supporting the formation of a stable multi-synthetase complex. The steady-state kinetics of aminoacylation by LysRS indicated that LeuRS specifically reduced the Km for tRNA(Lys) over 3-fold, with no additional change seen upon the addition of ProRS. No significant changes in aminoacylation by LeuRS or ProRS were observed upon the addition of LysRS. These findings, together with earlier data, indicate the existence of a functional complex of three aminoacyl-tRNA synthetases in archaea in which LeuRS improves the catalytic efficiency of tRNA aminoacylation by both LysRS and ProRS.  相似文献   

11.
Traditionally, convergent evolution has been considered to produce phenotypic similarity in independently evolved species. By contrast, recent studies have detected morphological divergence between species even in similar selective environments when different morphological traits combine to produce a specific functional output. However, it is still unclear whether a complex combination of non-morphological phenotypic traits, such as behavioural and life-history traits, can produce a similar performance in different species. In this study, I examined prey capture performance and related phenotypes in two sympatric ladybird species, Sospita oblongoguttata and Harmonia yedoensis, which specialize on the giant pine aphid, which is known to be elusive for ladybird hatchlings. In particular, I focused on egg size and proportion of trophic eggs in the clutch, since the amount of maternal investment per offspring can contribute to prey capture performance of ladybird hatchlings. Predation success of hatchlings against the giant pine aphid was higher in both S. oblongoguttata and H. yedoensis than in Harmonia axyridis, a generalist ladybird species that feeds on various kinds of aphid species in nature. Sospita oblongoguttata females, however, produced relatively larger eggs and in most clutches provided no trophic eggs, whereas H. yedoensis females produced smaller eggs and provided more trophic eggs per clutch. Moreover, hatchling morphology in H. yedoensis more closely resembled that of its congener, H. axyridis, than that of the more distantly related S. oblongoguttata, although like H. yedoensis, S. oblongoguttata predates on the elusive pine aphid. These results in two pine-associated specialist ladybirds indicate that divergent phenotypes can nonetheless have similar prey capture performance. In conclusion, this work demonstrates that the general ultimate function can be achieved by various mechanisms through convergence that operates at different level of life.  相似文献   

12.
Umehara T  Kim J  Lee S  Guo LT  Söll D  Park HS 《FEBS letters》2012,586(6):729-733
Posttranslational modifications play a crucial role in modulating protein structure and function. Genetic incorporation of unnatural amino acids into a specific site of a protein facilitates the systematic study of protein modifications including acetylation. We here report the directed evolution of pyrrolysyl-tRNA synthetase (PylRS) from Methanosarcina mazei to create N-acetyl lysyl-tRNA synthetases (AcKRSs) using a new selection system based on the killing activity of the toxic ccdB gene product. The amino acid specificity of these and of published AckRSs was tested in vitro and in vivo, and the enzyme-kinetic properties of the AckRSs were evaluated for the first time.  相似文献   

13.
I Tarassov  N Entelis    R P Martin 《The EMBO journal》1995,14(14):3461-3471
Cytoplasmic tRNA(Lys)CUU is the only nuclear-encoded tRNA of Saccharomyces cerevisiae found to be associated with mitochondria. Selective import of this tRNA into isolated organelles requires cytoplasmic factors. Here we identify two of these factors as the cytoplasmic and mitochondrial lysyl-tRNA synthetases. The cytoplasmic enzyme is obligatory for in vitro import of the deacylated, but not of the aminoacylated tRNA. We thus infer that it is needed for aminoacylation of the tRNA, which is a prerequisite for its import. The mitochondrial synthetase, which cannot aminoacylate tRN(Lys)CUU, is required for import of both aminoacylated and deacylated forms. Its depletion leads to a total arrest of tRNA import, in vitro and in vivo. The mitochondrial lysyl-tRNA synthetase is able to form specific and stable RNP complexes with the amino-acylated tRNA. Furthermore, an N-terminal truncated form of the synthetase which cannot be targeted into mitochondria is unable to direct the import of the tRNA. We therefore hypothesize that the cytosolic precursor form of the mitochondrial synthetase has a carrier function for translocation of the tRNA across the mitochondrial membranes. However, cooperation of the two synthetases is not sufficient to direct tRNA import, suggesting the need of additional factor(s).  相似文献   

14.
15.
Demonstration of two tyrosyl-tRNA synthetases of pea roots   总被引:1,自引:0,他引:1  
  相似文献   

16.
Most marine sponges establish a persistent association with a wide array of phylogenetically and physiologically diverse microbes. To date, the role of these symbiotic microbial communities in the metabolism and nutrient cycles of the sponge‐microbe consortium remains largely unknown. We identified and quantified the microbial communities associated with three common Mediterranean sponge species, Dysidea avara, Agelas oroides and Chondrosia reniformis (Demospongiae) that cohabitate coralligenous community. For each sponge we quantified the uptake and release of dissolved organic carbon (DOC) and nitrogen (DON), inorganic nitrogen and phosphate. Low microbial abundance and no evidence for DOC uptake or nitrification were found for D. avara. In contrast A. oroides and C. reniformis showed high microbial abundance (30% and 70% of their tissue occupied by microbes respectively) and both species exhibited high nitrification and high DOC and NH4+ uptake. Surprisingly, these unique metabolic pathways were mediated in each sponge species by a different, and host specific, microbial community. The functional convergence of microbial consortia found in these two sympatric sponge species, suggest that these metabolic processes may be of special relevance to the success of the holobiont.  相似文献   

17.
Identification of two glutamine synthetases in Agrobacterium.   总被引:1,自引:9,他引:1       下载免费PDF全文
Two distinct glutamine synthetases have been identified in Agrobacterium and in the fast-growing rhizobia. A limited survey indicates that GSII may be found only in the Rhizobiaceae family.  相似文献   

18.
Connecting two unrelated DNA sequences with a Mu dimer   总被引:9,自引:0,他引:9  
  相似文献   

19.
Prolyl-tRNA synthetases (ProRSs) are unique among synthetases in that they have diverse architectures, notably the variable presence of a cis-editing domain homologous to the freestanding deacylase proteins YbaK and ProX. Here, we describe crystal structures of two bacterial ProRSs from the pathogen Enterococcus faecalis, which possesses an editing domain, and from Rhodopseudomonas palustris, which does not. We compare the overall structure and binding mode of ATP and prolyl-adenylate with those of the archael/eukaryote-type ProRS from Thermus thermophilus. Although structurally more homologous to YbaK, which preferentially hydrolyzes Cys-tRNA(Pro), the editing domain of E. faecalis ProRS possesses key elements similar to ProX, with which it shares the activity of hydrolyzing Ala-tRNA(Pro). The structures give insight into the complex evolution of ProRSs, the mechanism of editing, and structural differences between prokaryotic- and eukaryotic-type ProRSs that can be exploited for antibiotic design.  相似文献   

20.
For nearly 50 years, succinyl-CoA synthetase in animals was thought to be specific for guanine nucleotides. Recently, we purified and characterized both an ADP-forming succinyl-CoA synthetase from pigeon breast muscle and the GDP-forming enzyme from liver (Johnson, J. D., Muhonen, W. W., and Lambeth, D. O. (1998) J. Biol. Chem. 273, 27573-27579). Using the sequences of the pigeon enzymes as queries in BLAST searches, we obtained genetic evidence that both enzymes are expressed in a wide range of animal species (Johnson, J. D., Mehus, J. G., Tews, K., Milavetz, B. I., and Lambeth, D. O. (1998) J. Biol. Chem. 273, 27580-27586). Here we extend those observations by presenting data from Western and Northern blots and enzymatic assays showing that both proteins are widely expressed in mammals with the relative amounts varying from tissue to tissue. We suggest that both succinyl-CoA synthetases catalyze the reverse reaction in the citric acid cycle in which the ADP-forming enzyme augments ATP production, whereas the GDP-forming enzyme supports GTP-dependent anabolic processes. Widely accepted shuttle mechanisms are invoked to explain how transport of P-enolpyruvate across mitochondrial membranes can transfer high energy phosphate between the cytosol and mitochondrial matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号