首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of novel thiazolo[3,2‐a]pyrimidines were synthesized and characterized by FT‐IR, 1H, 13C‐NMR and mass techniques. Their antioxidant activities were investigated by 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) radical scavenging assay and the results showed that all the synthesized compounds exhibit good antioxidant activity. In addition, it was found that any substituent on the aromatic ring of the products plays an important role in their antioxidant activity. In vitro cytotoxicity of compounds 4a – 4j was investigated using MTT cell viability assay. Among these compounds, 6‐ethyl 2,3‐dimethyl 5‐(4‐chlorophenyl)‐7‐methyl‐2,3‐dihydro‐5H‐[1,3]thiazolo[3,2‐a]pyrimidine‐2,3,6‐tricarboxylate ( 4e ) bearing a chlorine substituent displayed the highest cytotoxic effect (IC50=6.26±0.6 μm ) in comparison with doxorubicin (IC50=0.68±0.1 μm ) as a standard after 72 h. Therefore, it is assumed that these compounds could be used as effective antioxidant and cytotoxic agents.  相似文献   

2.
A series of novel esters and amides was synthesized on the basis of para‐coumaric acid containing isobornyl groups in ortho‐positions relative to the phenolic hydroxy group. Antioxidant properties of the obtained compounds were evaluated and compared on in vitro models: radical‐scavenging ability, antioxidant activity on a substrate containing the lipids of animal brain, cytotoxicity of red blood cells, antioxidant and membrane‐protective properties on the model of oxidative red blood cells hemolysis. Statistically significant relationship was established between the antioxidant activity of the studied compounds in model system containing animal lipids and the parameters reflecting their antioxidant properties on the model of H2O2‐induced hemolysis of red blood cells. It was determined that an amide with a morpholine fragment has the highest antioxidant activity. The specified derivative significantly surpassed the reference substances (parent acid, BHT) and was not inferior to the effective antioxidant 2,6‐diisobornyl‐4‐methylphenol in terms of its properties.  相似文献   

3.
A series of novel quinazolinone derivatives containing a substituted amino moiety were synthesized, evaluated for their cytotoxic and antibacterial activities. The results of MTT assay showed that all synthesized target compounds 5A  –  5O showed potent cytotoxicity against SGC‐7901 (IC50, 0.72 – 1.41 μm ). Moreover, the compounds 5D , 5I , and 5K showed better selectivity as compared with positive controls pemetrexed and MTX due to weak cytotoxicity against normal tissue cell line HUVSMC. Among synthesized compounds, the compounds 5E , 5J , 5L , and 5N showed broad‐spectrum cytotoxic activities against at least four cancer cell lines at a micromolar level. The results of antibacteria evaluation revealed that all synthesized compounds showed good to moderate antibacterial activities against Gram‐negative bacteria Escherichia coli. Among them, the MIC values of the compounds 5C , 5F , and 5M were 0.31 μg/mL.  相似文献   

4.
A series of novel 2‐oxoimidazolidine derivatives were synthesized and their antiviral activities against BK human polyomavirus type 1 (BKPyV) were evaluated in vitro. Bioassays showed that the synthesized compounds 1‐{[(4E)‐5‐(dichloromethylidene)‐2‐oxoimidazolidin‐4‐ylidene]sulfamoyl}piperidine‐4‐carboxylic acid ( 5 ) and N‐Cyclobutyl‐N′‐[(4E)‐5‐(dichloromethylidene)‐2‐oxoimidazolidin‐4‐ylidene]sulfuric diamide ( 4 ) exhibited moderate activities against BKPyV (EC50=5.4 and 5.5 μm , respectively) that are comparable to the standard drug Cidofovir. Compound 5 exhibited the same cytotoxicity in HFF cells and selectivity index (SI50) as Cidofovir. The selectivity index of compound 4 is three times less than that of Cidofovir due to the higher toxicity of this compound. Hence, these compounds may be taken as lead compound for further development of novel ant‐BKPyV agents.  相似文献   

5.
Cytotoxic and antimicrobial agents structurally based on quinazolinone, benzofuran and imidazole pharmacophores, have been designed and synthesized. Spectral (IR, 1H‐NMR) and elemental analysis data established the structures of these novel 3‐[1‐(1‐benzofuran‐2‐yl)‐2‐(4‐oxoquinazolin‐3(4H)‐yl)ethyl]‐1‐methyl‐1H‐imidazol‐3‐ium chloride hybrid derivatives. All the synthesized compounds were evaluated for in vitro cytotoxicity and antimicrobial activities. Cytotoxic evaluation using MTT assay revealed that compounds 12c , 12g and 12i exhibited significant cytotoxicity with IC50 values 1, 1, and 0.57 μm on this cell line, respectively. Biological activity of the synthesized compounds as antibacterial agent were also evaluated against three Gram‐negative (Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi), three Gram‐positive (Staphylococcus aureus, Bacillus subtilis and Listeria monocitogenes) and one yeast‐like fungi (Candida albicans) strains. All compounds 12a  –  12i showed slightly higher activity against Gram‐positive bacteria than the Gram‐negative one. Among the nine new compounds screened, 3‐[1‐(5‐bromo‐1‐benzofuran‐2‐yl)‐2‐(6‐chloro‐4‐oxoquinazolin‐3(4H)‐yl)ethyl]‐1‐methyl‐1H‐imidazol‐3‐ium chloride ( 12e ) has pronounced higher antimicrobial activity against all tested strains. These results demonstrated potential importance of molecular hybridization in the development of new lead molecules with major cytotoxicity and antimicrobial activity.  相似文献   

6.
Carpodesmia tamariscifolia is a brown alga rich in (poly)phenols with important cytotoxic and antioxidant effects. However, the relationship between its chemical composition and its effects is unknown. The aim of this study is to identify the potential compounds and mechanisms responsible for its main effects. The alga was extracted consecutively with hexane, dichloromethane and methanol and further fractionated using Sephadex LH‐20 and silica gel columns when appropriate. The fractions were subjected to thin‐layer chromatography and liquid chromatography‐mass spectrometry analysis and evaluated for their total phenolic content (Folin‐Ciocalteu assay), radical scavenging activity (DPPH assay), cytotoxic activity (MTT assay on the SH‐SY5Y cell line), and ability to generate H2O2 (Amplex Red assay). Chromatographic and phenolic analyses of the fractions indicate that abundant redox‐active phenols are present in all the fractions and that a high amount of prenylated hydroquinone derivatives is present in the apolar ones. In the hexane and dichloromethane fractions, the cytotoxic and antioxidant activities are closely related to their phenolic content, whereas in the methanol fractions, the cytotoxicity is negatively related to the phenolic content and the antioxidant activity is positively related to it. In the same tests, hydroquinone behaves as both strong cytotoxic and antioxidant agent. H2O2 assay shows that C. tamariscifolia fractions and hydroquinone can autoxidize and generate H2O2. Our results suggest that redox‐active phenols produce the pharmacological effects described for C. tamariscifolia and that the hydroquinone moiety of prenylated hydroquinone derivatives is responsible for both cytotoxic (through a pro‐oxidant mechanism secondary to its autoxidation) and antioxidant effects of the apolar fractions.  相似文献   

7.
A new series of N‐(pyrimidin‐2‐yl)benzenesulfonamide derivatives, 3a – 3i and 4a – 4i , was synthesized from pyrimidin‐2‐amines, 2a – 2i , with the aim to explore their effects on in vitro growth of Entamoeba histolytica. The chemical structures of the compounds were elucidated by elemental analysis, FT‐IR, 1H‐ and 13C‐NMR, and ESI mass‐spectral data. In vitro anti‐amoebic activity was evaluated against HM1 : IMSS strain of Entamoeba histolytica. The IC50 values were calculated by using the double dilution method. The results were compared with the IC50 value of the standard drug ‘metronidazole’. The selected compounds were tested for their cytotoxic activities by cell‐viability assay using H9C2 cardiac myoblasts cell line, and the results indicated that all the compounds displayed remarkable >80% viabilities to a concentration of 100 μg/ml.  相似文献   

8.
Chroogomphus rutilus is a rare fungal species that grows under pine trees and is now widely used as a functional food and pharmaceutical product. However, the chemical constituents and biological activities of Chroogomphus rutilus have been relatively limited. The present study aimed at determining the total polyphenols and flavonoids contents, biological activities and main phenolic compounds of Chroogomphus rutilus from different geographical origins at the stipe and pileus. The results suggested that Chroogomphus rutilus polyphenol extracts revealed a higher antioxidant, anti‐inflammatory, and cytotoxic activities, and there were significant differences between samples from different locations and regions. Correlation analysis showed that the contents of total polyphenols and flavonoids were significantly correlated with antioxidant and anti‐inflammatory activities. However, only the content of total flavonoids was significantly correlated with cytotoxicity, which means that the cytotoxicity of Chroogomphus rutilus polyphenol extracts may be regulated by flavonoids or other compounds. HPLC‐DAD analysis revealed that the main phenolic compound was protocatechuic acid, followed by baicalin, p‐hydroxyphenylacetic acid and p‐hydroxybenzoic acid, but comparing with the pileus extracts, the stipe extracts can be considered as a higher concentration of phenolic compounds. Therefore, antioxidant, anti‐inflammatory and cytotoxic activities of Chroogomphus rutilus polyphenol extracts could be due to the identified compounds. This study investigated a deep knowledge about the constituents and activities of Chroogomphus rutilus and provided the reference for its application in food and pharmaceutical.  相似文献   

9.
A series of Matijin‐Su (MTS, (2S)‐2‐{[(2S)‐2‐benzamido‐3‐phenylpropanoyl]amino}‐3‐phenylpropyl acetate) derivatives were synthesized and evaluated for their anti‐HBV and cytotoxic activities in vitro. Six compounds ( 4g , 4j , 5c , 5g , 5h and 5i ) showed significant inhibition against HBV DNA replication with the IC50 values in range of 2.18 – 8.55 μm , which were much lower than that of positive control lamivudine (IC50 82.42 μm ). In particular, compounds 5h (IC50 2.18 μm ; SI 151.59) and 5j (IC50 5.65 μm ; SI 51.16) displayed relatively low cytotoxicities, resulting in high SI values. Notably, besides the anti‐HBV DNA replication activity, compound 4j also exhibited more potent in vitro cytotoxic activity than 5‐fluorouracil in two hepatocellular carcinoma cell (HCC) lines (QGY‐7701 and SMMC‐7721), indicating that 4j may be a promising lead for the exploration of drugs with dual therapeutic effects on HBV infection and HBV‐induced HCC.  相似文献   

10.
Systematic chemical screening of the leaves of Bruguiera cylindrica, the tree mangrove of Rhizophoraceae family, afforded five single and pure compounds. The structures of the isolated compounds were established by their spectroscopic data as taraxerol ( 1 ), 3β‐(E)‐coumaroyltaraxerol ( 2 ), 3β‐(Z)‐coumaroyltaraxerol ( 3 ), β‐sitosterol ( 4 ), and eicosanol ( 5 ). In view of significant accumulation and interesting biological activities, taraxerol ( 1 ) was chemically transformed to synthesize a series of ten cinnamyl esters in very good to excellent yields. The synthesized analogues along with the parent compound were evaluated for their AChE inhibitory potential, BBB permeability and cytotoxicity against Neuro 2A cell line. Among the tested samples, compound 9 showed promising AChE inhibition with significantly low IC50 values, low cytotoxicity and high BBB permeability. Hence, compound 9 can be considered as a lead molecule for further development as potent AChE inhibitor.  相似文献   

11.
Robustic acid is reported to be a bioactive compound, isolated from the medicinal plant Dalbergia benthamii Prain . Ten alkyl and benzyl derivatives ( 2a – 2j ) of robustic acid were designed and synthesized based on molecular docking approaches. The biological activities of most of the synthesized compounds (such as 2g , 2h , and 2i ) were closely consistent with the docking results. In particular, 4‐O‐phenylpropyl substituted compound 2g displayed potent topoisomerase I inhibitory activity as well as cytotoxicity against SMMC‐7721, HepG2, and HeLa cell lines. Further biological testing suggests that compound 2g acted mainly by an arrest of the tumor cells in G1 phase of the cell cycle and suppressed cell proliferation by inducing apoptosis. The findings of this study are encouraging with respect to potential utilization of these compounds as new topoisomerase I inhibitors.  相似文献   

12.
Phosphodiesterase 4 (PDE4) is a key enzyme involved in the hydrolysis of cyclic adenosine monophosphate (cAMP) and widely expressed in several types of cancers. The inhibition of PDE4 results in an increased concentration of intracellular cAMP levels that imparts the anti‐inflammatory response in the target cells. In the present report, two series of triazolo‐pyridine dicarbonitriles and substituted dihydropyridine dicarbonitriles were synthesized using green protocol (TBAB in refluxed water). We next evaluated the title compounds for their cytotoxicity towards lung cancer (A549) cells and identified 7′‐[4‐(methylsulfonyl)phenyl]‐5′‐oxo‐1′,5′‐dihydrospiro[cyclohexane‐1,2′‐[1,2,4]triazolo[1,5‐a]pyridine]‐6′,8′‐dicarbonitrile ( 5h ) and 7′‐(1‐methyl‐1H‐imidazol‐2‐yl)‐5′‐oxo‐1′,5′‐dihydrospiro[cyclohexane‐1,2′‐[1,2,4]triazolo[1,5‐a]pyridine]‐6′,8′‐dicarbonitrile ( 5j ) as lead analogs with the IC50 values of 15.2 and 24.1 μm , respectively. Furthermore, all the new compounds were tested for PDE4 inhibitory activity and 5j showed relatively good inhibitory activity towards PDE4 with inhibition of 50.9 % at 10 μm . In silico analysis demonstrated the favorable interaction of the title compounds with the target enzyme. Taken together, the present study introduces a new scaffold for the development of novel PDE4 inhibitors to fight against inflammatory diseases.  相似文献   

13.
The present work aimed to determine the antioxidant and antiproliferative potential of Luffa cylindrica fruits collected at two different maturation stages and to identify and compare their functional components composition. The MeOH extracts of L. cylindrica fruits harvested at 60 – 65 days after seeding (S1) and 85 – 90 days after seeding (S2) were investigated for their antioxidant activity using various assays. Furthermore, the antiproliferative activity of the extracts against HeLa human cervical cancer cells was explored with xCELLigence real time cell analyzer, while the effect of the samples on the membrane integrity of the same cell line was assessed using LDH cytotoxicity leakage assay. Ultimately, the phytochemicals were analyzed using GC/MS and HPLC/TOF‐MS. The S1 sample had higher contents and more diversity in the phenolic compounds composition than S2. Furthermore, the S1 extract showed the highest antioxidant and antiproliferative activity, while the S2 extract had higher cytotoxicity towards HeLa cells. The findings revealed that the time of harvest has a big impact on the phytochemicals content and activity and that harvesting L. cylindrica at an early stage before the beginning of the development of the cellulose fibrous system is recommended for a rich phytochemical composition and efficient antioxidant and antiproliferative activities.  相似文献   

14.
A series of Schiff base molecules derived from a phthalimide scaffold was investigated as efficient antibacterial, antioxidant and DNA‐interacting agents. The spectroscopic characterization of these derivatives was studied in detail using elemental analysis and spectroscopic techniques. The DNA‐binding profile of title molecules against Ct‐DNA (calf thymus) was investigated by absorbance, fluorescence, hydrodynamics and thermal denaturation investigations. The bacterial inhibition potential of these molecules was investigated against Escherichia coli and Staphylococcus aureus. Molecule 3c emerged as the most active against S. aureus (IC50: 14.8 μg/mL), whereas compounds 3a and 3b displayed potential antibacterial activities against E. coli (IC50: 49.7 and 67.6 μg/mL). Molecular docking studies of these compounds against GlcN‐6‐P synthase were carried out to rationalize antibacterial efficiency of these molecules. These newly synthesized molecules were screened for their scavenging capacity against 2,2‐diphenyl‐1‐picryl‐hydrazyl (DPPH) and H2O2 free radicals and the results were compared with ascorbic acid as synthetic antioxidant. The title molecules 3a, 3b and 3e showed less than 20% hemolysis, which indicated their significant non‐toxic behavior.  相似文献   

15.
A series of 3‐(substituted aroyl)‐4‐(3,4,5‐trimethoxyphenyl)‐1H‐pyrrole derivatives were synthesized and determined for their anticancer activity against eleven cancer cell lines and two normal tissue cell lines using MTT assay. Among the synthesized compounds, compound 3f was the most potent compound against A375, CT‐26, HeLa, MGC80‐3, NCI‐H460 and SGC‐7901 cells (IC50 = 8.2 – 31.7 μm ); 3g , 3n and 3a were the most potent compounds against CHO (IC50 = 8.2 μm ), HCT‐15 (IC50 = 21 μm ) and MCF‐7 cells (IC50 = 18.7 μm ), respectively. Importantly, all the target compounds showed no cytotoxicity towards the normal tissue cell (IC50 > 100 μm ). Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents.  相似文献   

16.
In our search for novel histone deacetylases inhibitors, we have designed and synthesized a series of novel hydroxamic acids and N‐hydroxybenzamides incorporating quinazoline heterocycles ( 4a  –  4i , 6a  –  6i ). Bioevaluation showed that these quinazoline‐based hydroxamic acids and N‐hydroxybenzamides were potently cytotoxic against three human cancer cell lines (SW620, colon; PC‐3, prostate; NCI‐H23, lung). In term of cytotoxicity, several compounds, e.g., 4g , 4c , 4g  –  4i , 6c , and 6h , displayed from 5‐ up to 10‐fold higher potency than SAHA (suberoylanilidehydroxamic acid, vorinostat). The compounds were also generally comparable to SAHA in inhibiting HDACs with IC50 values in sub‐micromolar range. Some compounds, e.g., 4g , 6c , 6e , and 6h , were even more potent HDAC inhibitors compared to SAHA in HeLa extract assay. Docking studies demonstrated that the compounds tightly bound to HDAC2 at the active binding site with binding affinities higher than that of SAHA. Detailed investigation on the estimation of absorption, distribution, metabolism, excretion, and toxicity (ADMET) suggested that compounds 4g , 6c , and 6g , while showing potent HDAC2 inhibitory activity and cytotoxicity, also potentially displayed ADMET characteristics desirable to be expected as promising anticancer drug candidates.  相似文献   

17.
Coumarins are the most important class of natural compounds found widely in various plants. Many coumarin derivatives with different biological and pharmacological activities have been synthesized. In this study, the antiapoptotic and cytotoxic effects and DNA‐binding properties of some synthetic coumarin derivatives (4b, 4d, 4f, 4 g (DBP‐g), 4 h and 4j) against K562 cell lines were investigated using different techniques. MTT assay indicated that the DBP‐g compound was more active than other derivatives, with a IC50 value of 55 μM, and therefore this compound was chosen for further investigation. Apoptosis induction was assessed using acridine orange/ethidium bromide double‐staining and cell‐cycle analysis. In addition, in vitro DNA‐binding studies were carried out using ultraviolet–visible light absorption and fluorescence spectroscopy, as well as viscosity measurement and molecular modelling studies. In vitro results indicated that DBP‐g interacted with DNA through a groove‐binding mode with a binding constant (Kb) of 1.17 × 104 M?1. In agreement with other experimental data, molecular docking studies showed that DBP‐g is a minor groove binder. Overall, it can be concluded that DBP‐g could be used as an effective and novel chemotherapeutic agent.  相似文献   

18.
A series of benzazolone compounds were synthesized utilizing benzoxazolinonic and benzothiazolinonic heterocycles as the building unit. The antioxidant activity of these compounds was determined by inhibition of lipid peroxidation. The oxidation of LDL was induced in the presence of CuSO4 or 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH). The protective action of these compounds against the cytotoxicity was evaluated with lactate dehydrogenase (LDH) activity in bovine aortic endothelial cells (BAECs) and cellular vitality by measuring mitochondrial activity in the presence of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). The best antioxidant activities were observed for phenolic compounds 13 and 14b with ratio R = 2.5, 3.2 (5 μM). Both of these test substances increased the cell viability significantly as indicated by MTT assay and LDH release assay.  相似文献   

19.
The present article describes the synthesis and biological activity of various series of novel hydroxamic acids incorporating quinazolin‐4(3H)‐ones as novel small molecules targeting histone deacetylases. Biological evaluation showed that these hydroxamic acids were potently cytotoxic against three human cancer cell lines (SW620, colon; PC‐3, prostate; NCI?H23, lung). Most compounds displayed superior cytotoxicity than SAHA (suberoylanilide hydroxamic acid, Vorinostat) in term of cytotoxicity. Especially, N‐hydroxy‐7‐(7‐methyl‐4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5b ) and N‐hydroxy‐7‐(6‐methyl‐4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5c ) (IC50 values, 0.10–0.16 μm ) were found to be approximately 30‐fold more cytotoxic than SAHA (IC50 values of 3.29–3.67 μm ). N‐Hydroxy‐7‐(4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5a ; IC50 values of 0.21–0.38 μm ) was approximately 10‐ to 15‐fold more potent than SAHA in cytotoxicity assay. These compounds also showed comparable HDAC inhibition potency with IC50 values in sub‐micromolar ranges. Molecular docking experiments indicated that most compounds, as represented by 5b and 5c , strictly bound to HDAC2 at the active binding site with binding affinities much higher than that of SAHA.  相似文献   

20.
A series of novel indenopyrazole derivatives 2a‐j and 3a‐j were synthesized from the reaction of 1‐(4‐(hydroxy(1‐oxo‐1,3‐dihydro‐2 H‐inden‐2‐ylidene)methyl)phenyl)‐3‐phenylurea derivatives 1a‐j with hydrazine and phenylhydrazine, respectively. The obtained novel indenopyrazoles ( 2a‐j and 3a‐j ) were evaluated for anticancer activity against HeLa and C6 cell lines. Antiproliferative activity was determined by the BrdU proliferation ELISA assay; 2a , 2b , 2d , 2h , and 3h were found to be the most active compounds. The compounds were also screened for antimicrobial activity, and all compounds showed moderate activity against used microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号