首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing studies have confirmed that abnormally expressed microRNAs (miRNAs) take part in the carcinogenesis as well as the aggravation of hepatocellular carcinoma (HCC). However, little information is currently available about miR‐1914 in HCC. Here, we first confirmed that miR‐1914 inhibition in HCC cell lines and tumour specimens correlates with tumour size and histological grade. In a series of functional experiments, miR‐1914 inhibited tumour proliferation and colony formation, resulting in cell cycle arrest and increased apoptosis. Moreover, miR‐1914 mediated its functional effects by directly targeting GPR39 in HCC cells, leading to PI3K/AKT/mTOR repression. Restoring GPR39 expression incompletely counteracted the physiological roles of miR‐1914 in HCC cells. In addition, down‐regulation of AKT phosphorylation inhibited the effects of miR‐1914 in HCC. Furthermore, the overexpression of lncRNA DUXAP10 negatively correlated with the expression of miR‐1914 in HCC; thus, lncRNA DUXAP10 regulated miR‐1914 expression and modulated the GPR39/PI3K/AKT‐mediated cellular behaviours. In summary, the present study demonstrated for the first time that lncRNA DUXAP10–regulated miR‐1914 plays a functional role in inhibiting HCC progression by targeting GPR39‐mediated PI3K/AKT/mTOR pathway, and this miRNA represents a novel therapeutic target for patients with HCC.  相似文献   

2.
This study was designed to detecting the influences of lncRNA MEG3 in prostate cancer. Aberrant lncRNAs expression profiles of prostate cancer were screened by microarray analysis. The qRT‐PCR and Western blot were employed to investigating the expression levels of lncRNA MEG3, miR‐9‐5p and QKI‐5. The luciferase reporter assay was utilized to testifying the interactions relationship among these molecules. Applying CCK‐8 assay, wound healing assay, transwell assay and flow cytometry in turn, the cell proliferation, migration and invasion abilities as well as apoptosis were measured respectively. LncRNA MEG3 was a down‐regulated lncRNA in prostate cancer tissues and cells and could inhibit the expression of miR‐9‐5p, whereas miR‐9‐5p down‐regulated QKI‐5 expression. Overexpressed MEG3 and QKI‐5 could decrease the abilities of proliferation, migration and invasion in prostate cancer cells effectively and increased the apoptosis rate. On the contrary, miR‐9‐5p mimics presented an opposite tendency in prostate cancer cells. Furthermore, MEG3 inhibited tumour growth and up‐regulated expression of QKI‐5 in vivo. LncRNA MEG3 was a down‐regulated lncRNA in prostate cancer and impacted the abilities of cell proliferation, migration and invasion, and cell apoptosis rate, this regulation relied on regulating miR‐9‐5p and its targeting gene QKI‐5.  相似文献   

3.
Prostate cancer (PCa) is the second leading cause of cancer‐related death in males, primarily due to its metastatic potential. The present study aims to identify the expression of microRNA‐539 (miR‐539) in PCa and further investigate its functional relevance in PCa progression both in vitro and in vivo. Initially, microarray analysis was conducted to obtain the differentially expressed gene candidates and the regulatory miRNAs, after which the possible interaction between the two was determined. Next, ectopic expression and knock‐down of the levels of miR‐539 were performed in PCa cells to identify the functional role of miR‐539 in PCa pathogenesis, followed by the measurement of E‐cadherin, vimentin, Smad4, c‐Myc, Snail1 and SLUG expression, as well as proliferation, migration and invasion of PCa cells. Finally, tumour growth was evaluated in nude mice through in vivo experiments. The results found that miR‐539 was down‐regulated and DLX1 was up‐regulated in PCa tissues and cells. miR‐539 was also found to target and negatively regulate DLX1 expression, which resulted in the inhibition of the TGF‐β/Smad4 signalling pathway. Moreover, the up‐regulation of miR‐539 or DLX1 gene silencing led to the inhibition of PCa cell proliferation, migration, invasion, EMT and tumour growth, accompanied by increased E‐cadherin expression and decreased expression of vimentin, Smad4, c‐Myc, Snail1 and SLUG. In conclusion, the overexpression of miR‐539‐mediated DLX1 inhibition could potentially impede EMT, proliferation, migration and invasion of PCa cells through the blockade of the TGF‐β/Smad4 signalling pathway, highlighting a potential miR‐539/DLX1/TGF‐β/Smad4 regulatory axis in the treatment of PCa.  相似文献   

4.
Our present work was aimed to study on the regulatory role of MALAT1/miR‐145‐5p/AKAP12 axis on docetaxel (DTX) sensitivity of prostate cancer (PCa) cells. The microarray data (GSE33455) to identify differentially expressed lncRNAs and mRNAs in DTX‐resistant PCa cell lines (DU‐145‐DTX and PC‐3‐DTX) was retrieved from the Gene Expression Omnibus (GEO) database. QRT‐PCR analysis was performed to measure MALAT1 expression in DTX‐sensitive and DTX‐resistant tissues/cells. The human DTX‐resistant cell lines DU145‐PTX and PC3‐DTX were established as in vitro cell models, and the expression of MALAT1, miR‐145‐5p and AKAP12 was manipulated in DTX‐sensitive and DTX‐resistant cells. Cell viability was examined using MTT assay and colony formation methods. Cell apoptosis was assessed by TUNEL staining. Cell migration and invasion was determined by scratch test (wound healing) and Transwell assay, respectively. Dual‐luciferase assay was applied to analyse the target relationship between lncRNA MALAT1 and miR‐145‐5p, as well as between miR‐145‐5p and AKAP12. Tumour xenograft study was undertaken to confirm the correlation of MALAT1/miR‐145‐5p/AKAP12 axis and DTX sensitivity of PCa cells in vivo. In this study, we firstly notified that the MALAT1 expression levels were up‐regulated in clinical DTX‐resistant PCa samples. Overexpressed MALAT1 promoted cell proliferation, migration and invasion but decreased cell apoptosis rate of PCa cells in spite of DTX treatment. We identified miR‐145‐5p as a target of MALAT1. MiR‐145‐5p overexpression in PC3‐DTX led to inhibited cell proliferation, migration and invasion as well as reduced chemoresistance to DTX, which was attenuated by MALAT1. Moreover, we determined that AKAP12 was a target of miR‐145‐5p, which significantly induced chemoresistance of PCa cells to DTX. Besides, it was proved that MALAT1 promoted tumour cell proliferation and enhanced DTX‐chemoresistance in vivo. There was an lncRNA MALAT1/miR‐145‐5p/AKAP12 axis involved in DTX resistance of PCa cells and provided a new thought for PCa therapy.  相似文献   

5.
Long non‐coding RNA (lncRNA) deleted in lymphocytic leukaemia 1 (DLEU1) was reported to be involved in the occurrence and development of multiple cancers. However, the exact expression, biological function and underlying mechanism of DLEU1 in hepatocellular carcinoma (HCC) remain unclear. In this study, real‐time quantitative polymerase chain reaction (qRT‐PCR) in HCC tissues and cell lines revealed that DLEU1 expression was up‐regulated, and the increased DLEU1 was closely associated with advanced tumour‐node‐metastasis stage, vascular metastasis and poor overall survival. Function experiments showed that knockdown of DLEU1 significantly inhibited HCC cell proliferation, colony formation, migration and invasion, and suppressed epithelial to mesenchymal transition (EMT) process via increasing the expression of E‐cadherin and decreasing the expression of N‐cadherin and Vimentin. Luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay demonstrated that DLEU1 could sponge miR‐133a. Moreover, miR‐133a inhibition significantly reversed the suppression effects of DLEU1 knockdown on HCC cells. Besides, we found that silenced DLEU1 significantly decreased insulin‐like growth factor 1 receptor (IGF‐1R) expression (a target of miR‐133a) and its downstream signal PI3K/AKT pathway in HCC cells, while miR‐133a inhibitor partially reversed this trend. Furthermore, DLEU1 knockdown impaired tumour growth in vivo by regulating miR‐133a/IGF‐1R axis. Collectively, these findings indicate that DLEU1 promoted HCC progression by sponging miR‐133a to regulate IGF‐1R expression. Deleted in lymphocytic leukaemia 1/miR‐133a/IGF‐1R axis may be a novel target for treatment of HCC.  相似文献   

6.
外泌体是由细胞分泌的直径为30~150 nm的小囊泡,含有丰富的mRNA、microRNA和长链非编码RNA(lncRNA)。目前,大多数外泌体研究都集中在mRNA和microRNA,而对lncRNA的生物学功能并不十分清楚。研究表明,肿瘤细胞外泌体 lncRNA H19在肿瘤细胞的增殖、迁移和侵袭中发挥了重要作用。本研究将筛选到的lncRNA H19高表达的肝癌细胞HCCLM3,分别收集其高表达lncRNA H19的外泌体和其下调lncRNA H19表达后的外泌体。然后,将收集到的外泌体分别添加到lncRNA H19低表达的肝癌细胞Hep3B和HepG2孵育液中。孵育24 h后,检测其对肿瘤细胞的增殖、迁移和侵袭能力的影响。结果显示,肝癌细胞HCCLM3可分泌大量的外泌体,且能被其他肿瘤细胞大量摄取;与下调lncRNA H19表达的外泌体相比,lncRNA H19高表达的外泌体能显著增强Hep3B和HepG2细胞的增殖、迁移和侵袭能力。而这一作用可通过激活PI3K/AKT/mTOR通路实现。上述结果表明,lncRNA H19高表达的肝癌细胞以外泌体方式,增强邻近肝癌细胞的增殖、迁移和侵袭能力,促进肝癌的发生与发展。  相似文献   

7.
This study was aimed at exploring the effect of lncRNA BDNF‐AS on cell proliferation, migration, invasion and epithelial‐to‐mesenchymal transition (EMT) of oesophageal cancer (EC) cells. The expression of BDNF‐AS and miR‐214 in tissue samples and cells was measured by qRT‐PCR. The targeted relationship between BDNF‐AS and miR‐214 was analysed by dual‐luciferase reporter assay. After cell transfection, the cell proliferation activity was assessed by MTS method, while the migrating and invading abilities were evaluated by transwell assay. LncRNA BDNF‐AS was remarkably down‐regulated, while miR‐214 was up‐regulated in EC tissues and cells in comparison with normal tissues and cells. Overexpression of BDNF‐AS significantly inhibited the abilities of cell proliferation, migration and invasion as well as the EMT processes of EC cells. The bioinformatics analysis and luciferase assay indicated that BDNF‐AS could be directly bound by miR‐214. Furthermore, overexpression of miR‐214 and BDNF‐AS exerted suppressive influence on EC cell multiplication, migration, invasion and EMT processes. LncRNA BDNF‐AS restrained cell proliferation, migration, invasion and EMT processes in EC cells by targeting miR‐214.  相似文献   

8.
Shikonin is a natural naphthoquinone component with antioxidant and anti‐tumor function and has been used for hepatocellular carcinoma (HCC) treatment. According to the previous study, many herbs can regulate cancer cell progression by targeting specific microRNA (miRNA) (Liu, 2016). However, the underlying pathological mechanism of shikonin in HCC therapy is still unclear. The detection of cell growth and death rate were performed by hemacytometry and trypan blue staining, respectively. The expression of miR‐106b and SMAD7 messenger RNA (mRNA) in HCC cells was evaluated by quantitative real‐time polymerase chain reaction. Cell proliferation, apoptosis, and migration ability were measured by cell counting kit‐8 (CCK‐8), flow cytometry, and transwell assay. The expression of proteins E‐cadherin, N‐cadherin, vimentin, SMAD7, TGF‐β1, p‐SMAD3, SMAD3, and GAPDH was examined by western blot. The interaction between SMAD7 and miR‐106b was assessed by luciferase reporter system. Shikonin inhibited Huh7 and HepG2 cell growth in a dose‐dependent manner while induced cell death in a time‐dependent manner. In addition, the expression of miR‐106b was reduced after shikonin treatment. Moreover, miR‐106b attenuated the suppressive effects of shikonin on HCC cell migration and epithelial–mesenchymal transition (EMT). SMAD7 was predicted as a target of miR‐106b and the prediction was confirmed by luciferase reporter system. Additionally, we observed that SMAD7 reversed the promotive effects of miR‐106b on HCC cell progression and EMT. The subsequent western blot assay revealed that shikonin could modulate SMAD7/TGF‐β signaling pathway by targeting miR‐106b. In conclusion, Shikonin suppresses cell progression and EMT and accelerates cell death of HCC cells via modulating miR‐106b/SMAD7/TGF‐β signaling pathway, suggesting shikonin could be an effective agent for HCC treatment.  相似文献   

9.
Long non‐coding RNAs (lncRNAs) could regulate growth and metastasis of hepatocellular carcinoma (HCC). In this study, we aimed to investigate the mechanism of lncRNA F11‐AS1 in hepatitis B virus (HBV)–related HCC. The relation of lncRNA F11‐AS1 expression in HBV‐related HCC tissues to prognosis was analysed in silico. Stably HBV‐expressing HepG2.2.15 cells were established to explore the regulation of lncRNA F11‐AS1 by HBx protein, as well as to study the effects of overexpressed lncRNA F11‐AS1 on proliferation, migration, invasion and apoptosis in vitro. Subsequently, the underlying interactions and roles of lncRNA F11‐AS1/miR‐211‐5p/NR1I3 axis in HBV‐related HCC were investigated. Additionally, the influence of lncRNA F11‐AS1 and miR‐211‐5p on tumour growth and metastasis capacity of HepG2.2.15 cells were studied on tumour‐bearing nude mice. Poor expression of lncRNA F11‐AS1 was correlated with poor prognosis in patients with HBV‐related HCC, and its down‐regulation was caused by the HBx protein. lncRNA F11‐AS1 was proved to up‐regulate the NR1I3 expression by binding to miR‐211‐5p. Overexpression of lncRNA F11‐AS1 reduced the proliferation, migration and invasion, yet induced apoptosis of HepG2.2.15 cells in vitro, which could be abolished by overexpression of miR‐211‐5p. Additionally, either lncRNA F11‐AS1 overexpression or miR‐211‐5p inhibition attenuated the tumour growth and metastasis capacity of HepG2.2.15 cells in vivo. Collectively, lncRNA F11‐AS1 acted as a modulator of miR‐211‐5p to positively regulate the expression of NR1I3, and the lncRNA F11‐AS1/miR‐211‐5p/NR1I3 axis participated in HBV‐related HCC progression via interference with the cellular physiology of HCC.  相似文献   

10.
11.
Preeclampsia (PE), a pregnancy‐specific disorder, is a leading cause of perinatal maternal‐fetal mortality and morbidity. Impaired cell migration and invasion of trophoblastic cells and an imbalanced systemic maternal inflammatory response have been proposed as potential mechanisms of PE pathogenesis. Comparative analysis between PE placentas and normal placentas profiled differentially expressed miRNAs, lncRNAs, and mRNAs, including miR‐19a‐3p (miRNA), PSG10P (lncRNA), and IL1RAP (mRNA). This study was conducted to investigate their potential roles in PE pathogenesis. The expression of miR‐19a‐3p, PSG10P, and IL1RAP was examined in PE and normal placentas using RT‐qPCR. An in vitro experiment was performed in human trophoblast HET8/SVneo and TEV‐1 cells cultured in normoxic and hypoxic conditions. MiR‐19a‐3p targets were identified using Targetscan, miRanda, and PicTar analysis as well as luciferase reporter assays. The mouse model of PE was conducted using sFlt‐1 for in vivo tests. Lower levels of miR‐19a‐3p, but higher levels of PSG10P and IL1RAP were observed in PE placentas and the trophoblast cells in hypoxia. Luciferase reporter assays confirmed that PSG10P and IL1RAP were both direct targets of miR‐19a‐3p. Exposure to hypoxia inhibited cell viability, migration, and invasion of HET8/SVneo and TEV‐1 cells. Knocking out PSG10P and IL1RAP or overexpressing miR‐19a‐3p rescued the inhibition caused by hypoxia. In vivo experiments showed that IL1RAP promoted the expression of caspase‐3, a key apoptosis enzyme, but inhibited MMP9, which is responsible for degrading the extracellular matrix, suggesting a significant role of IL1RAP in cell proliferation, migration, and invasion. miR‐19a‐3p, PSG10P, and IL1RAP were all found to be involved in PE pathogenesis. With a common targeting region in their sequences, a regulatory network in the PSG10P/miR‐19a‐3p/IL1RAP pathway may contribute to PE pathogenesis during pregnancy.  相似文献   

12.
Osteosarcoma is a rare malignant bone tumor with high degree of malignancy. HULC (highly upregulated in liver cancer), a long noncoding RNA (lncRNA) was involved in hepatocellular carcinoma development and progression, but its underlying mechanism in osteosarcoma is unknown. The aim of this study was to explore the functional role of HULC in osteosarcoma. The study was conducted in human osteosarcoma cell lines and the expression of HULC in the cell lines was detected by qRT‐PCR. Furthermore, the effects of HULC on tumorigenicity of osteosarcoma cells were evaluated by in vitro assays. Results revealed that HULC was highly expressed in osteosarcoma MG63 and OS‐732 cells compared to osteoblast hFOB1.19 cells. Suppression of HULC in osteosarcoma cells inhibited cell viability, migration, invasion, and promoted apoptosis. HULC functioned as an endogenous sponge for miR‐122, and its silence functioned through upregulating miR‐122. HNF4G was a target of miR‐122, and the effect of HNF4G on OS‐732 cells was the same as HULC. Furthermore, overexpression of miR‐122 inactivated PI3K/AKT, JAK/STAT, and Notch pathways by downregulation of HNF4G. These findings suggest that knockdown of HULC inhibited proliferation, migration, and invasion by sponging miR‐122 in osteosarcoma cells. HULC may act as a novel therapeutic target for management of osteosarcoma.  相似文献   

13.
How lncRNA SNHG1 influences the aggressiveness of nasopharyngeal carcinoma cells as well as the underlying mechanism was studied. The lncRNA differences were analysed by GSE12452 gene microarray. The expression of SNHG1, MiR‐145‐5p and NUAK1 was identified by qRT‐PCR and western blot. Transfection was conducted to construct nasopharyngeal carcinoma cells with different expressions of SNHG1, miR‐145‐5p and NUAK1. Dual‐luciferase reporter assay was performed to explore the relationship between SNHG1, miR‐145‐5p and NUAK1. Wound‐healing assay and transwell invasion experiments were employed to study changes in cell migration capacity and cell invasion, respectively. Tumour xenografts were performed to observe lung metastasis of nude mice inoculated with transfected CNE cells. SNHG1 is highly expressed in nasopharyngeal carcinoma tissues and in cell lines. Down‐regulation of SNHG1 facilitated the expression of miR‐145‐5p and further suppressed the level of NAUK1 in CNE and HNE‐1 cells. Silencing of SNHG1, up‐regulation of miR‐145‐5p and inhibition of NAUK1 by relative transfection all attenuated the aggressiveness of CNE and HNE‐1 cells both in vivo and in vitro. Moreover, the impaired cell migration and invasion by SNHG1 siRNA could be rescued by cotransfection of miR‐145‐5p in CNE and HNE‐1 cells. LncRNA SNHG1 promoted the expression of NUAK1 by down‐regulating miR‐145‐5p and thus promoted the aggressiveness of nasopharyngeal carcinoma cells through AKT signalling pathway and induced epithelial‐mesenchymal transition (EMT).  相似文献   

14.
Ganoderic acid A (GA‐A), recognized as a lanostanetriterpene isolated from Ganoderma lucidum, demonstrates an efficient antitumor activity in multiple cancers. To date, it is unclear whether and how GA‐A functions on human glioblastoma (GBM). To unravel the functional significance of GA‐A on human glioblastoma (GBM), the cell‐counting kit‐8 and transwell assays were used to detect proliferation, migration, and invasion of human GBM cell after GA‐A treatment. Then, we utilized the flow cytometry and western blot to further evaluate the effect of GA‐A on GBM cell. Further, activities of autophagy and PI3K/AKT signaling were assessed by Western blot assay. We found that GA‐A significantly inhibited proliferation, migration, and invasion of GBM cell. Additionally, GA‐A markedly triggered cell apoptosis, which incarnated an elevation trend in apoptotic percentage, simultaneously, an increased level of proapoptosis protein (Bax and active caspase‐3) and a decreased level of antiapoptosis protein (Bcl‐2), induced by GA‐A treatment. Meanwhile, levels of two well‐known autophagy markers (beclin 1 and LC3 II) increased while another autophagic substrate (P‐62) was reduced. Moreover, the expressions levels of phosphorylated AKT, mTOR, p‐P70S6K, and cyclin D1 in the PI3K/AKT pathway were significantly reduced, which revealed GA‐A repressed the activation of PI3K/AKT signaling pathway. Collectively, these results indicate that GA‐A may encourage U251 cell growth and invasion/migration inhibition, apoptosis, and autophagy through the inactivation of PI3K/AKT signaling pathway in human GBM. Hence, GA‐A may be a potent antitumorigenic agent for human GBM in future clinical practice.  相似文献   

15.
Long non‐coding RNAs (lncRNAs) have emerged as new and important regulators of pathological processes including tumour development. In this study, we demonstrated that differentiation antagonizing non‐protein coding RNA (DANCR) was up‐regulated in lung adenocarcinoma (ADC) and that the knockdown of DANCR inhibited tumour cell proliferation, migration and invasion and restored cell apoptosis rescued; cotransfection with a miR‐496 inhibitor reversed these effects. Luciferase reporter assays showed that miR‐496 directly modulated DANCR; additionally, we used RNA‐binding protein immunoprecipitation (RIP) and RNA pull‐down assays to further confirm that the suppression of DANCR by miR‐496 was RISC‐dependent. Our study also indicated that mTOR was a target of miR‐496 and that DANCR could modulate the expression levels of mTOR by working as a competing endogenous RNA (ceRNA). Furthermore, the knockdown of DANCR reduced tumour volumes in vivo compared with those of the control group. In conclusion, this study showed that DANCR might be an oncogenic lncRNA that regulates mTOR expression through directly binding to miR‐496. DANCR may be regarded as a biomarker or therapeutic target for ADC.  相似文献   

16.
Aberrant Notch signalling plays an important role in cancer progression. However, little is known about the interaction between miRNA and the Notch signalling pathway and its role in gastric cancer (GC). In this study, we found that miR‐124 was down‐regulated in GC compared with adjacent normal tissue. Forced expression of miR‐124 inhibited GC cell growth, migration and invasion, and induced cell cycle arrest. miR‐124 negatively regulated Notch1 signalling by targeting JAG1. miR‐124 levels were also shown to be inversely correlated with JAG1 expression in GC. Furthermore, we found that the overexpression of the intracellular domain of Notch1 repressed miR‐124 expression, promoted GC cell growth, migration and invasion. Conversely, blocking Notch1 using a γ‐secretase inhibitor up‐regulated miR‐124 expression, inhibited GC cell growth, migration and invasion. In conclusion, our data demonstrates a regulatory feedback loop between miR‐124 and Notch1 signalling in GC cells, suggesting that the miR‐124/Notch axis may be a potential therapeutic target against GC.  相似文献   

17.
18.
Diabetic nephropathy is a leading cause of end‐stage renal disease globally. The vital role of circular RNAs (circRNAs) has been reported in diabetic nephropathy progression, but the molecular mechanism linking diabetic nephropathy to circRNAs remains elusive. In this study, we investigated the significant function of circ‐AKT3/miR‐296‐3p/E‐cadherin regulatory network on the extracellular matrix accumulation in mesangial cells in diabetic nephropathy. The expression of circ‐AKT3 and fibrosis‐associated proteins, including fibronectin, collagen type I and collagen type IV, was assessed via RT‐PCR and Western blot analysis in diabetic nephropathy animal model and mouse mesangial SV40‐MES13 cells. Luciferase reporter assays were used to investigate interactions among E‐cadherin, circ‐AKT3 and miR‐296‐3p in mouse mesangial SV40‐MES13 cells. Cell apoptosis was evaluated via flow cytometry. The level of circ‐AKT3 was significantly lower in diabetic nephropathy mice model group and mouse mesangial SV40‐MES13 cells treated with high‐concentration (25 mmol/L) glucose. In addition, circ‐AKT3 overexpression inhibited the level of fibrosis‐associated protein, such as fibronectin, collagen type I and collagen type IV. Circ‐AKT3 overexpression also inhibited the apoptosis of mouse mesangial SV40‐MES13 cells treated with high glucose. Luciferase reporter assay and bioinformatics tools identified that circ‐AKT3 could act as a sponge of miR‐296‐3p and E‐cadherin was the miR‐296‐3p direct target. Moreover, circ‐AKT3/miR‐296‐3p/E‐cadherin modulated the extracellular matrix of mouse mesangial cells in high‐concentration (25 mmol/L) glucose, inhibiting the synthesis of related extracellular matrix protein. In conclusion, circ‐AKT3 inhibited the extracellular matrix accumulation in diabetic nephropathy mesangial cells through modulating miR‐296‐3p/E‐cadherin signals, which might offer novel potential opportunities for clinical diagnosis targets and therapeutic biomarkers for diabetic nephropathy.  相似文献   

19.
Prostate cancer (PCa) is both the foremost and second cause of cancer death in the male population. Patients with hormone‐dependent PCa are initially sensitive to androgen‐deprivation therapy, later the cancer progress to a hormone‐independent state and fails to respond and progress to the metastatic stage, where the cells gain the ability to escape cell death and develop resistance to current therapies, thereby leading to migration, invasion, and metastasis of cancer. Many clinical trials using nutraceuticals on cancer using human subjects have also been extensively studied, these studies confirm the efficacy of drugs tested in in vitro and in vivo preclinical models. Among various dietary phytochemicals, ginger is commonly used in the diet and possesses many active principles that act against cancer. Among various active principles, zingerone is a key active phenolic compound present in Zingiber officinale (Ginger), it has potent antioxidant property and it acts against carcinogens. The present study evaluated the efficacy of zingerone at different doses on the PCa cell line regarding apoptosis, upstream signing molecules such as Akt/mTOR, and migration metastasis. A cell viability assay using MTT was performed to estimate the percentage of viability of zingerone‐treated PC‐3 cells. The mitochondrial membrane potential, intracellular reactive oxygen species, and apoptosis induction in the zingerone‐treated PC‐3 cells were studied by using different fluorescence staining techniques. The expression patterns of PI3K, AKT, p‐AKT, mTOR, and p‐mTOR were investigated through the Western blot analysis assay. Zingerone induces apoptosis and alters Akt/mTOR molecules; it also inhibits cell adhesion and migration of PCa cells. From the present study, it is concluded that zingerone effectively induces apoptosis and inhibits cancer signaling, thereby acting as a potent drug against PCa.  相似文献   

20.
Tumor suppressor long noncoding RNA maternally expressed gene 3 (lncRNA MEG3) exists in various cancers. Nonetheless, the functions of lncRNA MEG3 in choriocarcinoma (CC) are still not well studied. We explored the effects of lncRNA MEG3 on human CC JEG-3 and BeWo cells. lncRNA MEG3 was overexpressed, and the effects of lncRNA MEG3 on cell viability, proliferation, apoptosis, migration, and invasion were assessed by the cell counting kit-8 assay, western blot analysis, flow cytometry (plus western blot analysis), and transwell assay (plus western blot analysis), respectively. Then, the expression level of miR-211 was detected by real-time quantitative polymerase chain reaction. After that, the effects of dysregulated microRNA-211 (miR-211) with overexpressing lncRNA MEG3 on JEG-3 cells and BeWo cells were testified. Western blot analysis was used to study the involvements of the signaling pathways in the lncRNA MEG3-associated modulation. We found that lncRNA MEG3 upregulation reduced cell viability, inhibited proliferation, migration and invasion, and promoted apoptosis. Expression of miR-211 was upregulated after lncRNA MEG3 overexpression. Effects of lncRNA MEG3 overexpression were augmented by miR-211 overexpression, while they were declined by miR-211 silencing. Phosphorylated levels of PI3K, AKT, and AMP-activated protein kinase (AMPK) were decreased by lncRNA MEG3 overexpression via regulation of miR-211. To sum up, lncRNA MEG3 could repress proliferation, migration and invasion, and promote apoptosis of JEG-3 and BeWo cells through upregulating miR-211. The PI3K/AKT and AMPK pathways were inhibited by lncRNA MEG3 overexpression via regulation of miR-211.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号