首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Axonal degeneration is a key event in the pathogenesis of neurodegenerative conditions. We show here that mec-4d triggered axonal degeneration of Caenorhabditis elegans neurons and mammalian axons share mechanistical similarities, as both are rescued by inhibition of calcium increase, mitochondrial dysfunction, and NMNAT overexpression. We then explore whether reactive oxygen species (ROS) participate in axonal degeneration and neuronal demise. C. elegans dauers have enhanced anti-ROS systems, and dauer mec-4d worms are completely protected from axonal degeneration and neuronal loss. Mechanistically, downregulation of the Insulin/IGF-1-like signaling (IIS) pathway protects neurons from degenerating in a DAF-16/FOXO–dependent manner and is related to superoxide dismutase and catalase-increased expression. Caloric restriction and systemic antioxidant treatment, which decrease oxidative damage, protect C. elegans axons from mec-4d-mediated degeneration and delay Wallerian degeneration in mice. In summary, we show that the IIS pathway is essential in maintaining neuronal homeostasis under pro-degenerative stimuli and identify ROS as a key intermediate of neuronal degeneration in vivo. Since axonal degeneration represents an early pathological event in neurodegeneration, our work identifies potential targets for therapeutic intervention in several conditions characterized by axonal loss and functional impairment.  相似文献   

2.
Ataxin‐2, a conserved RNA‐binding protein, is implicated in the late‐onset neurodegenerative disease Spinocerebellar ataxia type‐2 (SCA2). SCA2 is characterized by shrunken dendritic arbors and torpedo‐like axons within the Purkinje neurons of the cerebellum. Torpedo‐like axons have been described to contain displaced endoplasmic reticulum (ER) in the periphery of the cell; however, the role of Ataxin‐2 in mediating ER function in SCA2 is unclear. We utilized the Caenorhabditis elegans and Drosophila homologs of Ataxin‐2 (ATX‐2 and DAtx2, respectively) to determine the role of Ataxin‐2 in ER function and dynamics in embryos and neurons. Loss of ATX‐2 and DAtx2 resulted in collapse of the ER in dividing embryonic cells and germline, and ultrastructure analysis revealed unique spherical stacks of ER in mature oocytes and fragmented and truncated ER tubules in the embryo. ATX‐2 and DAtx2 reside in puncta adjacent to the ER in both C. elegans and Drosophila embryos. Lastly, depletion of DAtx2 in cultured Drosophila neurons recapitulated the shrunken dendritic arbor phenotype of SCA2. ER morphology and dynamics were severely disrupted in these neurons. Taken together, we provide evidence that Ataxin‐2 plays an evolutionary conserved role in ER dynamics and morphology in C. elegans and Drosophila embryos during development and in fly neurons, suggesting a possible SCA2 disease mechanism.  相似文献   

3.
Alcohol modulates the highly conserved, voltage‐ and calcium‐activated potassium (BK) channel, which contributes to alcohol‐mediated behaviors in species from worms to humans. Previous studies have shown that the calcium‐sensitive domains, RCK1 and the Ca2+ bowl, are required for ethanol activation of the mammalian BK channel in vitro. In the nematode Caenorhabditis elegans, ethanol activates the BK channel in vivo, and deletion of the worm BK channel, SLO‐1, confers strong resistance to intoxication. To determine if the conserved RCK1 and calcium bowl domains were also critical for intoxication and basal BK channel‐dependent behaviors in C. elegans, we generated transgenic worms that express mutated SLO‐1 channels predicted to have the RCK1, Ca2+ bowl or both domains rendered insensitive to calcium. As expected, mutating these domains inhibited basal function of SLO‐1 in vivo as neck and body curvature of these mutants mimicked that of the BK null mutant. Unexpectedly, however, mutating these domains singly or together in SLO‐1 had no effect on intoxication in C. elegans. Consistent with these behavioral results, we found that ethanol activated the SLO‐1 channel in vitro with or without these domains. By contrast, in agreement with previous in vitro findings, C. elegans harboring a human BK channel with mutated calcium‐sensing domains displayed resistance to intoxication. Thus, for the worm SLO‐1 channel, the putative calcium‐sensitive domains are critical for basal in vivo function but unnecessary for in vivo ethanol action.  相似文献   

4.
During synapse development, synaptic proteins must be targeted to sites of presynaptic release. Directed transport as well as local sequestration of synaptic vesicle precursors (SVPs), membranous organelles containing many synaptic proteins, might contribute to this process. Using neuron‐wide time‐lapse microscopy, we studied SVP dynamics in the DA9 motor neuron in Caenorhabditis elegans. SVP transport was highly dynamic and bi‐directional throughout the entire neuron, including the dendrite. While SVP trafficking was anterogradely biased in axonal segments prior to the synaptic domain, directionality of SVP movement was stochastic in the dendrite and distal axon. Furthermore, frequency of movement and speed were variable between different compartments. These data provide evidence that SVP transport is differentially regulated in distinct neuronal domains. It also suggests that polarized SVP transport in concert with local vesicle capturing is necessary for accurate presynapse formation and maintenance. SVP trafficking analysis of two hypomorphs for UNC‐104/KIF1A in combination with mathematical modeling identified directionality of movement, entry of SVPs into the axon as well as axonal speeds as the important determinants of steady‐state SVP distributions. Furthermore, detailed dissection of speed distributions for wild‐type and unc‐104/kif1a mutant animals revealed an unexpected role for UNC‐104/KIF1A in dendritic SVP trafficking.   相似文献   

5.
A new behavioral assay is described for studying chemosensation in the nematode Caenorhabditis elegans. This assay presents three main characteristics: (1) the worm is restrained by gluing, preserving correlates of identifiable behaviors; (2) the amplitude and time course of the stimulus are controlled by the experimenter; and (3) the behavior is recorded quantitatively. We show that restrained C. elegans display behaviors comparable to those of freely moving worms. Moreover, the chemosensory response of wild‐type glued animals to changes in salt concentration is similar to that of freely moving animals. This glued‐worm assay was used to reveal new chemosensory deficits of the potassium channel mutant egl‐2. We conclude that the glued worm assay can be used to study the chemosensory regulation of C. elegans behavior and how it is affected by neuronal or genetic manipulations. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

6.
Femtosecond laser nanosurgery has been widely accepted as an axonal injury model, enabling nerve regeneration studies in the small model organism, Caenorhabditis elegans. To overcome the time limitations of manual worm handling techniques, automation and new immobilization technologies must be adopted to improve throughput in these studies. While new microfluidic immobilization techniques have been developed that promise to reduce the time required for axotomies, there is a need for automated procedures to minimize the required amount of human intervention and accelerate the axotomy processes crucial for high-throughput. Here, we report a fully automated microfluidic platform for performing laser axotomies of fluorescently tagged neurons in living Caenorhabditis elegans. The presented automation process reduces the time required to perform axotomies within individual worms to ∼17 s/worm, at least one order of magnitude faster than manual approaches. The full automation is achieved with a unique chip design and an operation sequence that is fully computer controlled and synchronized with efficient and accurate image processing algorithms. The microfluidic device includes a T-shaped architecture and three-dimensional microfluidic interconnects to serially transport, position, and immobilize worms. The image processing algorithms can identify and precisely position axons targeted for ablation. There were no statistically significant differences observed in reconnection probabilities between axotomies carried out with the automated system and those performed manually with anesthetics. The overall success rate of automated axotomies was 67.4±3.2% of the cases (236/350) at an average processing rate of 17.0±2.4 s. This fully automated platform establishes a promising methodology for prospective genome-wide screening of nerve regeneration in C. elegans in a truly high-throughput manner.  相似文献   

7.
Voltage‐gated calcium channels (VGCCs) serve as a critical link between electrical signaling and diverse cellular processes in neurons. We have exploited recent advances in genetically encoded calcium sensors and in culture techniques to investigate how the VGCC α1 subunit EGL‐19 and α2/δ subunit UNC‐36 affect the functional properties of C. elegans mechanosensory neurons. Using the protein‐based optical indicator cameleon, we recorded calcium transients from cultured mechanosensory neurons in response to transient depolarization. We observed that in these cultured cells, calcium transients induced by extracellular potassium were significantly reduced by a reduction‐of‐function mutation in egl‐19 and significantly reduced by L‐type calcium channel inhibitors; thus, a main source of touch neuron calcium transients appeared to be influx of extracellular calcium through L‐type channels. Transients did not depend directly on intracellular calcium stores, although a store‐independent 2‐APB and gadolinium‐sensitive calcium flux was detected. The transients were also significantly reduced by mutations in unc‐36, which encodes the main neuronal α2/δ subunit in C. elegans. Interestingly, while egl‐19 mutations resulted in similar reductions in calcium influx at all stimulus strengths, unc‐36 mutations preferentially affected responses to smaller depolarizations. These experiments suggest a central role for EGL‐19 and UNC‐36 in excitability and functional activity of the mechanosensory neurons. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

8.
Hahm JH  Kim S  Paik YK 《Aging cell》2011,10(2):208-219
Innate immune responses to pathogens are governed by the nervous system. Here, we investigated the molecular mechanism underlying innate immunity in Caenorhabditis elegans against Escherichia coli OP50, a standard laboratory C. elegans food. Longevity was compared in worms fed live or UV‐killed OP50 at low or high density food condition (HDF). Expression of the antimicrobial gene lys‐8 was approximately 5‐fold higher in worms fed live OP50, suggesting activation of innate immunity upon recognition of OP50 metabolites. Lifespan was extended and SOD‐3 mRNA levels were increased in gpa‐9‐overexpressing gpa‐9XS worms under HDF in association with robust induction of insulin/IGF‐1 signaling (IIS). Expression of ins‐7 and daf‐28 that control lys‐8 expression was reduced in gpa‐9XS, indicating that GPA‐9‐mediated immunity is due in part to ins‐7 and daf‐28 downregulation. Our results suggest that OP50 metabolites in amphid neurons elicit innate immunity through the IIS pathway, and identify GPA‐9 as a novel regulator of both the immune system and aging in C. elegans.  相似文献   

9.
Neurons rely on microtubule (MT) motor proteins such as kinesin‐1 and dynein to transport essential cargos between the cell body and axon terminus. Defective axonal transport causes abnormal axonal cargo accumulations and is connected to neurodegenerative diseases, including Alzheimer's disease (AD). Glycogen synthase kinase 3 (GSK‐3) has been proposed to be a central player in AD and to regulate axonal transport by the MT motor protein kinesin‐1. Using genetic, biochemical and biophysical approaches in Drosophila melanogaster, we find that endogenous GSK‐3 is a required negative regulator of both kinesin‐1‐mediated and dynein‐mediated axonal transport of the amyloid precursor protein (APP), a key contributor to AD pathology. GSK‐3 also regulates transport of an unrelated cargo, embryonic lipid droplets. By measuring the forces motors generate in vivo, we find that GSK‐3 regulates transport by altering the activity of kinesin‐1 motors but not their binding to the cargo. These findings reveal a new relationship between GSK‐3 and APP, and demonstrate that endogenous GSK‐3 is an essential in vivo regulator of bidirectional APP transport in axons and lipid droplets in embryos. Furthermore, they point to a new regulatory mechanism in which GSK‐3 controls the number of active motors that are moving a cargo .  相似文献   

10.
Steady axonal cargo flow is central to the functioning of healthy neurons. However, a substantial fraction of cargo in axons remains stationary up to several minutes. We examine the transport of precursors of synaptic vesicles (pre‐SVs), endosomes and mitochondria in Caenorhabditis elegans touch receptor neurons, showing that stationary cargo are predominantly present at actin‐rich regions along the neuronal process. Stationary vesicles at actin‐rich regions increase the propensity of moving vesicles to stall at the same location, resulting in traffic jams arising from physical crowding. Such local traffic jams at actin‐rich regions are likely to be a general feature of axonal transport since they also occur in Drosophila neurons. Repeated touch stimulation of C. elegans reduces the density of stationary pre‐SVs, indicating that these traffic jams can act as both sources and sinks of vesicles. This suggests that vesicles trapped in actin‐rich regions are functional reservoirs that may contribute to maintaining robust cargo flow in the neuron. A video abstract of this article can be found at: Video S1 ; Video S2   相似文献   

11.
KIF15, the vertebrate kinesin‐12, is best known as a mitotic motor protein, but continues to be expressed in neurons. Like KIF11 (the vertebrate kinesin‐5), KIF15 interacts with microtubules in the axon to limit their sliding relative to one another. Unlike KIF11, KIF15 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but we are now using zebrafish to extend these studies to an in vivo model. We previously studied kif15 in zebrafish by injecting splice‐blocking morpholinos injected into embryos. Consistent with the cell culture work, these studies demonstrated that axons grow faster and longer when KIF15 levels are reduced. In the present study, we applied CRISPR/Cas9‐based knockout technology to create kif15 mutants and labeled neurons with Tg(mnx1:GFP) transgene or transient expression of elavl3:EGFP‐alpha tubulin. We then compared by live imaging the homozygotic, heterozygotic mutants to their wildtype siblings to ascertain the effects of depletion of kif15 during Caudal primary motor neuron and Rohon‐Beard (R‐B) sensory neuron development. The results showed, compared to the kif15 wildtype, the number of branches was reduced while axon outgrowth was accelerated in kif15 homozygotic and heterozygotic mutants. In R‐B sensory neurons, after laser irradiation, injured axons with loss of kif15 displayed significantly greater regenerative velocity. Given these results and the fact that kif15 drugs are currently under development, we posit kif15 as a novel target for therapeutically augmenting regeneration of injured axons.   相似文献   

12.
Neurons communicate with other cells via axons and dendrites, slender membrane extensions that contain pre- or post-synaptic specializations. If a neuron is damaged by injury or disease, it may regenerate. Cell-intrinsic and extrinsic factors influence the ability of a neuron to regenerate and restore function. Recently, the nematode C. elegans has emerged as an excellent model organism to identify genes and signaling pathways that influence the regeneration of neurons1-6. The main way to initiate neuronal regeneration in C. elegans is laser-mediated cutting, or axotomy. During axotomy, a fluorescently-labeled neuronal process is severed using high-energy pulses. Initially, neuronal regeneration in C. elegans was examined using an amplified femtosecond laser5. However, subsequent regeneration studies have shown that a conventional pulsed laser can be used to accurately sever neurons in vivo and elicit a similar regenerative response1,3,7.We present a protocol for performing in vivo laser axotomy in the worm using a MicroPoint pulsed laser, a turnkey system that is readily available and that has been widely used for targeted cell ablation. We describe aligning the laser, mounting the worms, cutting specific neurons, and assessing subsequent regeneration. The system provides the ability to cut large numbers of neurons in multiple worms during one experiment. Thus, laser axotomy as described herein is an efficient system for initiating and analyzing the process of regeneration.  相似文献   

13.
A recent study suggests that postdauer Caenorhabditis elegans hermaphrodites produce more self‐sperm and have larger brood sizes than worms that bypass diapause. Why might natural selection favor increased self‐sperm production in postdauer hermaphrodites? This question is addressed by developing an age‐structured model for an exponentially growing worm population descending from a founder postdauer hermaphrodite. It is assumed that natural selection favors those founders that have the largest number of living descendants at some fixed future time. Increased self‐sperm production in postdauer hermaphrodites can then evolve when the diapause‐bypassing descendants suffer a higher mortality rate than their parental postdauer founders.  相似文献   

14.
Neural development in metazoans is characterized by the establishment of initial process tracts by pioneer axons and the subsequent extension of follower axons along these pioneer processes. Mechanisms governing the fidelity of follower extension along pioneered routes are largely unknown. In C. elegans, formation of the right angle‐shaped lumbar commissure connecting the lumbar and preanal ganglia is an example of pioneer/follower dynamics. We find that the dystroglycan ortholog DGN‐1 mediates the fidelity of follower lumbar commissure axon extension along the pioneer axon route. In dgn‐1 mutants, the axon of the pioneer PVQ neuron faithfully establishes the lumbar commissure, but axons of follower lumbar neurons, such as PVC, frequently bypass the lumbar commissure and extend along an oblique trajectory directly toward the preanal ganglion. In contrast, disruption of the UNC‐6/netrin guidance pathway principally perturbs PVQ ventral guidance to pioneer the lumbar commissure. Loss of DGN‐1 in unc‐6 mutants has a quantitatively similar effect on follower axon guidance regardless of PVQ axon route, indicating that DGN‐1 does not mediate follower/pioneer adhesion. Instead, DGN‐1 appears to block premature responsiveness of follower axons to a preanal ganglion‐directed guidance cue, which mediates ventral‐to‐anterior reorientation of lumbar commissure axons. Deletion analysis shows that only the most N‐terminal DGN‐1 domain is required for these activities. These studies suggest that dystroglycan modulation of growth cone responsiveness to conflicting guidance cues is important for restricting follower axon extension to the tracts laid down by pioneers. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

15.
Neurons are highly polarized cells that consist of three main structural and functional domains: a cell body or soma, an axon, and dendrites. These domains contain smaller compartments with essential roles for proper neuronal function, such as the axonal presynaptic boutons and the dendritic postsynaptic spines. The structure and function of these compartments have now been characterized in great detail. Intriguingly, however, in the last decade additional levels of compartmentalization within the axon and the dendrites have been identified, revealing that these structures are much more complex than previously thought. Herein we examine several types of structural and functional sub‐compartmentalization found in neurons of both vertebrates and invertebrates. For example, in mammalian neurons the axonal initial segment functions as a sub‐compartment to initiate the action potential, to select molecules passing into the axon, and to maintain neuronal polarization. Moreover, work in Drosophila melanogaster has shown that two distinct axonal guidance receptors are precisely clustered in adjacent segments of the commissural axons both in vivo and in vitro, suggesting a cell‐intrinsic mechanism underlying the compartmentalized receptor localization. In Caenorhabditis elegans, a subset of interneurons exhibits calcium dynamics that are localized to specific sections of the axon and control the gait of navigation, demonstrating a regulatory role of compartmentalized neuronal activity in behaviour. These findings have led to a number of new questions, which are important for our understanding of neuronal development and function. How are these sub‐compartments established and maintained? What molecular machinery and cellular events are involved? What is their functional significance for the neuron? Here, we reflect on these and other key questions that remain to be addressed in this expanding field of biology.  相似文献   

16.
Research on the Caenorhabditis elegans microbiota only recently started, with little known about how C. elegans acquires its microbiota. Slugs live in the same habitat as C. elegans and are known vectors for the worm. Hence, we wondered how the passage through a slug affects the C. elegans gut microbiota and whether worms can acquire bacteria from the slug. Using fluorescently labelled microbiota and 16S rRNA gene amplicon sequencing, we evaluated microbiota persistence and acquisition in C. elegans after slug passage. We compared C. elegans gut microbiomes isolated from wild-caught slugs to the microbiomes of worms after experimental slug passage to compare similarities and differences in microbiome composition. We found that microbiota persists in C. elegans while passing the slug gut and that worms simultaneously acquire additional bacteria species from the slug. Although the amplicon sequencing variant (ASV) richness of worms from the experiment did not exceed the richness of worms that naturally occur in slugs, we found a high number of shared ASVs indicating the importance of commonly associated microbiota. We demonstrate that C. elegans can take advantage of its passage through the slug by acquiring new potential microbiota without losing its native microbiota.  相似文献   

17.
In this study, we examined the neuroprotective effects and anti‐inflammatory properties of Dl‐3‐n‐butylphthalide (NBP) in Sprague‐Dawley (SD) rats following traumatic spinal cord injury (SCI) as well as microglia activation and inflammatory response both in vivo and in vitro. Our results showed that NBP improved the locomotor recovery of SD rats after SCI an significantly diminished the lesion cavity area of the spinal cord, apoptotic activity in neurons, and the number of TUNEL‐positive cells at 7 days post‐injury. NBP inhibited activation of microglia, diminished the release of inflammatory mediators, and reduced the upregulation of microglial TLR4/NF‐κB expression at 1 day post‐injury. In a co‐culture system with BV‐2 cells and PC12 cells, NBP significantly reduced the cytotoxicity of BV‐2 cells following lipopolysaccharide (LPS) stimulation. In addition, NBP reduced the activation of BV‐2 cells, diminished the release of inflammatory mediators, and inhibited microglial TLR4/NF‐κB expression in BV‐2 cells. Our findings demonstrate that NBP may have neuroprotective and anti‐inflammatory properties in the treatment of SCI by inhibiting the activation of microglia via TLR4/NF‐κB signalling.  相似文献   

18.
An important model system for understanding genes, neurons and behavior, the nematode worm C. elegans naturally moves through a variety of complex postures, for which estimation from video data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estimation in C. elegans, including self-occluded, coiled shapes. We leverage advances in machine vision afforded from convolutional neural networks and introduce a synthetic yet realistic generative model for images of worm posture, thus avoiding the need for human-labeled training. WormPose is effective and adaptable for imaging conditions across worm tracking efforts. We quantify pose estimation using synthetic data as well as N2 and mutant worms in on-food conditions. We further demonstrate WormPose by analyzing long (∼ 8 hour), fast-sampled (∼ 30 Hz) recordings of on-food N2 worms to provide a posture-scale analysis of roaming/dwelling behaviors.  相似文献   

19.
UNC-104 is the Caenorhabditis elegans homolog of kinesin-3 KIF1A known for its fast shuffling of synaptic vesicle protein transport vesicles in axons. SYD-2 is the homolog of liprin-α in C. elegans known to activate UNC-104; however, signals that trigger SYD-2 binding to the motor remain unknown. Because SYD-2 is a substrate of PTP-3/LAR PTPR, we speculate a role of this phosphatase in SYD–2-mediated motor activation. Indeed, coimmunoprecipitation assays revealed increased interaction between UNC-104 and SYD-2 in ptp-3 knockout worms. Intramolecular FRET analysis in living nematodes demonstrates that SYD-2 largely exists in an open conformation state in ptp-3 mutants. These assays also revealed that nonphosphorylatable SYD-2 (Y741F) exists predominately in folded conformations, while phosphomimicking SYD-2 (Y741E) primarily exists in open conformations. Increased UNC-104 motor clustering was observed along axons likely as a result of elevated SYD-2 scaffolding function in ptp-3 mutants. Also, both motor velocities as well as cargo transport speeds were visibly increased in neurons of ptp-3 mutants. Lastly, epistatic analysis revealed that PTP-3 is upstream of SYD-2 to regulate its intramolecular folding.  相似文献   

20.
During the development of the nervous system, the migration of many cells and axons is guided by extracellular molecules. These molecules bind to receptors at the tips of the growth cones of migrating axons and trigger intracellular signaling to steer the axons along the correct trajectories. We have identified a novel mutant, enu-3 (enhancer of Unc), that enhances the motor neuron axon outgrowth defects observed in strains of Caenorhabditis elegans that lack either the UNC-5 receptor or its ligand UNC-6/Netrin. Specifically, the double-mutant strains have enhanced axonal outgrowth defects mainly in DB4, DB5 and DB6 motor neurons. enu-3 single mutants have weak motor neuron axon migration defects. Both outgrowth defects of double mutants and axon migration defects of enu-3 mutants were rescued by expression of the H04D03.1 gene product. ENU-3/H04D03.1 encodes a novel predicted putative trans-membrane protein of 204 amino acids. It is a member of a family of highly homologous proteins of previously unknown function in the C. elegans genome. ENU-3 is expressed in the PVT interneuron and is weakly expressed in many cell bodies along the ventral cord, including those of the DA and DB motor neurons. We conclude that ENU-3 is a novel C. elegans protein that affects both motor axon outgrowth and guidance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号