首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better understand the coordination between dark and light reactions during the transition from C3 to C4 photosynthesis, we optimized a method for separating thylakoids from mesophyll (MC) and bundle sheath cells (BSCs) across different plant species. We grew six Paniceae grasses including representatives from the C3, C3–C4 and C4 photosynthetic types and all three C4 biochemical subtypes [nicotinamide adenine dinucleotide phosphate‐dependent malic enzyme (NADP‐ME), nicotinamide adenine dinucleotide‐dependent malic enzyme (NAD‐ME) and phosphoenolpyruvate carboxykinase (PEPCK)] in addition to Zea mays under control conditions (1000 μmol quanta m?2 s?1 and 400 ppm of CO2). Proteomics analysis of thylakoids under native conditions, using blue native polyacrylamide gel electrophoresis followed by liquid chromatography‐mass spectrometry (LC‐MS), demonstrated the presence of subunits of all light‐reaction‐related complexes in all species and cell types. C4 NADP‐ME species showed a higher photosystems I/II ratio and a clear accumulation of the NADH dehydrogenase‐like complexes in BSCs, while Cytb6f was more abundant in BSCs of C4 NAD‐ME species. The C4 PEPCK species showed no clear differences between cell types. Our study presents, for the first time, a good separation between BSC and MC for a C3–C4 intermediate grass which did not show noticeable differences in the distribution of the thylakoid complexes. For the NADP‐ME species Panicum antidotale, growth at glacial CO2 (180 ppm of CO2) had no effect on the distribution of the light‐reaction complexes, while growth at low light (200 μmol quanta m?2 s?1) promoted the accumulation of light‐harvesting proteins in both cell types. These results add to our understanding of thylakoid distribution across photosynthetic types and subtypes, and introduce thylakoid distribution between the MC and BSC of a C3–C4 intermediate species.  相似文献   

2.
C4 photosynthesis evolved multiple times in diverse lineages. Most physiological studies comparing C4 plants were not conducted at the low atmospheric CO2 prevailing during their evolution. Here, 24 C4 grasses belonging to three biochemical subtypes [nicotinamide adenine dinucleotide malic enzyme (NAD‐ME), phosphoenolpyruvate carboxykinase (PCK) and nicotinamide adenine dinucleotide phosphate malic enzyme (NADP‐ME)] and six major evolutionary lineages were grown under ambient (400 μL L?1) and inter‐glacial (280 μL L?1) CO2. We hypothesized that nitrogen‐related and water‐related physiological traits are associated with subtypes and lineages, respectively. Photosynthetic rate and stomatal conductance were constrained by the shared lineage, while variation in leaf mass per area (LMA), leaf N per area, plant dry mass and plant water use efficiency were influenced by the subtype. Subtype and lineage were equally important for explaining variations in photosynthetic nitrogen use efficiency (PNUE) and photosynthetic water use efficiency (PWUE). CO2 treatment impacted most parameters. Overall, higher LMA and leaf N distinguished the Chloridoideae/NAD‐ME group, while NADP‐ME and PCK grasses were distinguished by higher PNUE regardless of lineage. Plants were characterized by high photosynthesis and PWUE when grown at ambient CO2 and by high conductance at inter‐glacial CO2. In conclusion, the evolutionary and biochemical diversity among C4 grasses was aligned with discernible leaf physiology, but it remains unknown whether these traits represent ecophysiological adaptation.  相似文献   

3.
Rapid metabolite diffusion across the mesophyll (M) and bundle sheath (BS) cell interface in C4 leaves is a key requirement for C4 photosynthesis and occurs via plasmodesmata (PD). Here, we investigated how growth irradiance affects PD density between M and BS cells and between M cells in two C4 species using our PD quantification method, which combines three‐dimensional laser confocal fluorescence microscopy and scanning electron microscopy. The response of leaf anatomy and physiology of NADP‐ME species, Setaria viridis and Zea mays to growth under different irradiances, low light (100 μmol m?2 s?1), and high light (1,000 μmol m?2 s?1), was observed both at seedling and established growth stages. We found that the effect of growth irradiance on C4 leaf PD density depended on plant age and species. The high light treatment resulted in two to four‐fold greater PD density per unit leaf area than at low light, due to greater area of PD clusters and greater PD size in high light plants. These results along with our finding that the effect of light on M‐BS PD density was not tightly linked to photosynthetic capacity suggest a complex mechanism underlying the dynamic response of C4 leaf PD formation to growth irradiance.  相似文献   

4.
The photosynthetic efficiency of the CO2‐concentrating mechanism in two forms of single‐cell C4 photosynthesis in the family Chenopodiaceae was characterized. The Bienertioid‐type single‐cell C4 uses peripheral and central cytoplasmic compartments (Bienertia sinuspersici), while the Borszczowioid single‐cell C4 uses distal and proximal compartments of the cell (Suaeda aralocaspica). C4 photosynthesis within a single‐cell raises questions about the efficiency of this type of CO2‐concentrating mechanism compared with the Kranz‐type. We used measurements of leaf CO2 isotope exchange (Δ13C) to compare the efficiency of the single‐cell and Kranz‐type forms of C4 photosynthesis under various temperature and light conditions. Comparisons were made between the single‐cell C4 and a sister Kranz form, S. eltonica[NAD malic enzyme (NAD ME) type], and with Flaveria bidentis[NADP malic enzyme (NADP‐ME) type with Kranz Atriplicoid anatomy]. There were similar levels of Δ13C discrimination and CO2 leakiness (?) in the single‐cell species compared with the Kranz‐type. Increasing leaf temperature (25 to 30 °C) and light intensity caused a decrease in Δ13C and ? across all C4 types. Notably, B. sinuspersici had higher Δ13C and ? than S. aralocaspica under lower light. These results demonstrate that rates of photosynthesis and efficiency of the CO2‐concentrating mechanisms in single‐cell C4 plants are similar to those in Kranz‐type.  相似文献   

5.
C4 grasses of the NAD‐ME type (Astrebla lappacea, Eleusine coracana, Eragrostis superba, Leptochloa dubia, Panicum coloratum, Panicum decompositum) and the NADP‐ME type (Bothriochloa bladhii, Cenchrus ciliaris, Dichanthium sericeum, Panicum antidotale, Paspalum notatum, Pennisetum alopecuroides, Sorghum bicolor) were used to investigate the role of O2 as an electron acceptor during C4 photosynthesis. Mass spectrometric measurements of gross O2 evolution and uptake were made concurrently with measurements of net CO2 uptake and chlorophyll fluorescence at different irradiances and leaf temperatures of 30 and 40 °C. In all C4 grasses gross O2 uptake increased with increasing irradiance at very high CO2 partial pressures (pCO2) and was on average 18% of gross O2 evolution. Gross O2 uptake at high irradiance and high pCO2 was on average 3.8 times greater than gross O2 uptake in the dark. Furthermore, gross O2 uptake in the light increased with O2 concentration at both high CO2 and the compensation point, whereas gross O2 uptake in the dark was insensitive to O2 concentration. This suggests that a significant amount of O2 uptake may be associated with the Mehler reaction, and that the Mehler reaction varies with irradiance and O2 concentration. O2 exchange characteristics at high pCO2 were similar for NAD‐ME and NADP‐ME species. NAD‐ME species had significantly greater O2 uptake and evolution at the compensation point particularly at low irradiance compared to NADP‐ME species, which could be related to different rates of photorespiratory O2 uptake. There was a good correlation between electron transport rates estimated from chlorophyll fluorescence and gross O2 evolution at high light and high pCO2.  相似文献   

6.
Evolutionary adaptation to variation in resource supply has resulted in plant strategies that are based on trade‐offs in functional traits. Here, we investigate, for the first time across multiple species, whether such trade‐offs are also apparent in growth and morphology responses to past low, current ambient, and future high CO2 concentrations. We grew freshly germinated seedlings of up to 28 C3 species (16 forbs, 6 woody, and 6 grasses) in climate chambers at 160 ppm, 450 ppm, and 750 ppm CO2. We determined biomass, allocation, SLA (specific leaf area), LAR (leaf area ratio), and RGR (relative growth rate), thereby doubling the available data on these plant responses to low CO2. High CO2 increased RGR by 8%; low CO2 decreased RGR by 23%. Fast growers at ambient CO2 had the greatest reduction in RGR at low CO2 as they lost the benefits of a fast‐growth morphology (decoupling of RGR and LAR [leaf area ratio]). Despite these shifts species ranking on biomass and RGR was unaffected by CO2, winners continued to win, regardless of CO2. Unlike for other plant resources we found no trade‐offs in morphological and growth responses to CO2 variation, changes in morphological traits were unrelated to changes in growth at low or high CO2. Thus, changes in physiology may be more important than morphological changes in response to CO2 variation.  相似文献   

7.
Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential responses to increasing CO2 availability among species. We used short‐term photosynthetic responses of nine seagrass species from the south‐west of Australia to test species‐specific responses to enhanced CO2 and changes in HCO3?. Net photosynthesis of all species except Zostera polychlamys were limited at pre‐industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3? users through acidification of diffusive boundary layers, production of extracellular carbonic anhydrase, or uptake and internal conversion of HCO3?. Species responded differently to near saturating CO2 implying that increasing atmospheric CO2 may change competition among seagrass species if co‐occurring in mixed beds. Increasing CO2 availability also enhanced internal aeration in the one species assessed. We expect that future increases in atmospheric CO2 will have the strongest impact on seagrass recruits and sparsely vegetated beds, because densely vegetated seagrass beds are most often limited by light and not by inorganic carbon.  相似文献   

8.
Continuing enrichment of atmospheric CO2 may change plant community composition, in part by altering the availability of other limiting resources including soil water, nutrients, or light. The combined effects of CO2 enrichment and altered resource availability on species flowering remain poorly understood. We quantified flowering culm and ramet production and biomass allocation to flowering culms/ramets for 10 years in C4‐dominated grassland communities on contrasting soils along a CO2 concentration gradient spanning pre‐industrial to expected mid‐21st century levels (250–500 μl/L). CO2 enrichment explained up to 77% of the variation in flowering culm count across soils for three of the five species, and was correlated with flowering culm count on at least one soil for four of five species. In contrast, allocation to flowering culms was only weakly correlated with CO2 enrichment for two species. Flowering culm counts were strongly correlated with species aboveground biomass (AGB; R2 = .34–.74), a measure of species abundance. CO2 enrichment also increased soil moisture and decreased light levels within the canopy but did not affect soil inorganic nitrogen availability. Structural equation models fit across the soils suggested species‐specific controls on flowering in two general forms: (1) CO2 effects on flowering culm count mediated by canopy light level and relative species AGB (species AGB/total AGB) or by soil moisture effects on flowering culm count; (2) effects of canopy light level or soil inorganic nitrogen on flowering and/or relative species AGB, but with no significant CO2 effect. Understanding the heterogeneity in species responses to CO2 enrichment in plant communities across soils in edaphically variable landscapes is critical to predict CO2 effects on flowering and other plant fitness components, and species potential to adapt to future environmental changes.  相似文献   

9.
Uncertainty about long‐term leaf‐level responses to atmospheric CO2 rise is a major knowledge gap that exists because of limited empirical data. Thus, it remains unclear how responses of leaf gas exchange to elevated CO2 (eCO2) vary among plant species and functional groups, or across different levels of nutrient supply, and whether they persist over time for long‐lived perennials. Here, we report the effects of eCO2 on rates of net photosynthesis and stomatal conductance in 14 perennial grassland species from four functional groups over two decades in a Minnesota Free‐Air CO2 Enrichment experiment, BioCON. Monocultures of species belonging to C3 grasses, C4 grasses, forbs, and legumes were exposed to two levels of CO2 and nitrogen supply in factorial combinations over 21 years. eCO2 increased photosynthesis by 12.9% on average in C3 species, substantially less than model predictions of instantaneous responses based on physiological theory and results of other studies, even those spanning multiple years. Acclimation of photosynthesis to eCO2 was observed beginning in the first year and did not strengthen through time. Yet, contrary to expectations, the response of photosynthesis to eCO2 was not enhanced by increased nitrogen supply. Differences in responses among herbaceous plant functional groups were modest, with legumes responding the most and C4 grasses the least as expected, but did not further diverge over time. Leaf‐level water‐use efficiency increased by 50% under eCO2 primarily because of reduced stomatal conductance. Our results imply that enhanced nitrogen supply will not necessarily diminish photosynthetic acclimation to eCO2 in nitrogen‐limited systems, and that significant and consistent declines in stomatal conductance and increases in water‐use efficiency under eCO2 may allow plants to better withstand drought.  相似文献   

10.
Elevated atmospheric carbon dioxide concentrations ([CO2]) generally increase plant photosynthesis in C3 species, but not in C4 species, and reduce stomatal conductance in both C3 and C4 plants. In addition, tissue nitrogen concentration ([N]) often fails to keep pace with enhanced carbon gain under elevated CO2, particularly in C3 species. While these responses are well documented in many species, implications for plant growth and nutrient cycling in native ecosystems are not clear. Here we present data on 18 years of measurement of above and belowground biomass, tissue [N] and total standing crop of N for a Scirpus olneyi‐dominated (C3 sedge) community, a Spartina patens‐dominated (C4 grass) community and a C3–C4‐mixed species community exposed to ambient and elevated (ambient +340 ppm) atmospheric [CO2] in natural salinity and sea level conditions of a Chesapeake Bay wetland. Increased biomass production (shoots plus roots) under elevated [CO2] in the S. olneyi‐dominated community was sustained throughout the study, averaging approximately 35%, while no significant effect of elevated [CO2] was found for total biomass in the C4‐dominated community. We found a significant decline in C4 biomass (correlated with rising sea level) and a concomitant increase in C3 biomass in the mixed community. This shift from C4 to C3 was accelerated by the elevated [CO2] treatment. The elevated [CO2] stimulation of total biomass accumulation was greatest during rainy, low salinity years: the average increase above the ambient treatment during the three wettest years (1994, 1996, 2003) was 2.9 t ha−1 but in the three driest years (1995, 1999, 2002), it was 1.2 t ha−1. Elevated [CO2] depressed tissue [N] in both species, but especially in the S. olneyi where the relative depression was positively correlated with salinity and negatively related with the relative enhancement of total biomass production. Thus, the greatest amount of carbon was added to the S. olneyi‐dominated community during years when shoot [N] was reduced the most, suggesting that the availability of N was not the most or even the main limitation to elevated [CO2] stimulation of carbon accumulation in this ecosystem.  相似文献   

11.
Determining underlying physiological patterns governing plant productivity and diversity in grasslands are critical to evaluate species responses to future environmental conditions of elevated CO2 and nitrogen (N) deposition. In a 9‐year experiment, N was added to monocultures of seven C3 grassland species exposed to elevated atmospheric CO2 (560 μmol CO2 mol?1) to evaluate how N addition affects CO2 responsiveness in species of contrasting functional groups. Functional groups differed in their responses to elevated CO2 and N treatments. Forb species exhibited strong down‐regulation of leaf Nmass concentrations (?26%) and photosynthetic capacity (?28%) in response to elevated CO2, especially at high N supply, whereas C3 grasses did not. Hence, achieved photosynthetic performance was markedly enhanced for C3 grasses (+68%) in elevated CO2, but not significantly for forbs. Differences in access to soil resources between forbs and grasses may distinguish their responses to elevated CO2 and N addition. Forbs had lesser root biomass, a lower distribution of biomass to roots, and lower specific root length than grasses. Maintenance of leaf N, possibly through increased root foraging in this nutrient‐poor grassland, was necessary to sustain stimulation of photosynthesis under long‐term elevated CO2. Dilution of leaf N and associated photosynthetic down‐regulation in forbs under elevated [CO2], relative to the C3 grasses, illustrates the potential for shifts in species composition and diversity in grassland ecosystems that have significant forb and grass components.  相似文献   

12.
A general understanding of the links between atmospheric CO2 concentration and the functioning of the terrestrial biosphere requires not only an understanding of plant trait responses to the ongoing transition to higher CO2 but also the legacy effects of past low CO2. An interesting question is whether the transition from current to higher CO2 can be thought of as a continuation of the past trajectory of low to current CO2 levels. Determining this trajectory requires quantifying the effect sizes of plant response to low CO2. We performed a meta‐analysis of low CO2 growth experiments on 34 studies with 54 species. We quantified how plant traits vary at reduced CO2 levels and whether C3 versus C4 and woody versus herbaceous plant species respond differently. At low CO2, plant functioning changed drastically: on average across all species, a 50% reduction in current atmospheric CO2 reduced net photosynthesis by 38%; increased stomatal conductance by 60% and decreased intrinsic water use efficiency by 48%. Total plant dry biomass decreased by 47%, while specific leaf area increased by 17%. Plant types responded similarly: the only significant differences being no increase in SLA for C4 species and a 16% smaller decrease in biomass for woody C3 species at glacial CO2. Quantitative comparison of low CO2 effect sizes to those from high CO2 studies showed that the magnitude of response of stomatal conductance, water use efficiency and SLA to increased CO2 can be thought of as continued shifts along the same line. However, net photosynthesis and dry weight responses to low CO2 were greater in magnitude than to high CO2. Understanding the causes for this discrepancy can lead to a general understanding of the links between atmospheric CO2 and plant responses with relevance for both the past and the future.  相似文献   

13.
C3 photosynthesis is often limited by CO2 diffusivity or stomatal (gs) and mesophyll (gm) conductances. To characterize effects of stomatal closure induced by either high CO2 or abscisic acid (ABA) application on gm, we examined gs and gm in the wild type (Col‐0) and ost1 and slac1‐2 mutants of Arabidopsis thaliana grown at 390 or 780 μmol mol?1 CO2. Stomata of these mutants were reported to be insensitive to both high CO2 and ABA. When the ambient CO2 increased instantaneously, gm decreased in all these plants, whereas gs in ost1 and slac1‐2 was unchanged. Therefore, the decrease in gm in response to high CO2 occurred irrespective of the responses of gs. gm was mainly determined by the instantaneous CO2 concentration during the measurement and not markedly by the CO2 concentration during the growth. Exogenous application of ABA to Col‐0 caused the decrease in the intercellular CO2 concentration (Ci). With the decrease in Ci, gm did not increase but decreased, indicating that the response of gm to CO2 and that to ABA are differently regulated and that ABA content in the leaves plays an important role in the regulation of gm.  相似文献   

14.
During the last Ice age, CO2 concentration ([CO2]) was 180-200 μmol/mol compared with the modern value of 380 μmol/mol,and global temperatures were ~8 ℃ cooler. Relatively little is known about the responses of C3 and C4 species to longterm exposure to glacial conditions. Here Abutilon theophrasti Medik. (C3) and Amaranthus retroflexus L. (C4) were grown at 200 μmol/mol CO2 with current (30/24 ℃) and glacial (22/16 ℃) temperatures for 22 d. Overall, the C4 species exhibited a large growth advantage over the C3 species at low [CO2]. However, this advantage was reduced at low temperature, where the C4 species produced 5× the total mass of the C3 species versus 14× at the high temperature.This difference was due to a reduction In C4 growth at low temperature, since the C3 species exhibited similar growth between temperatures. Physiological differences between temperatures were not detected for either species, although photorespirationlnet photosynthesis was reduced in the C3 species grown at low temperature, suggesting evidence of improved carbon balance at this treatment. This system suggests that C4 species had a growth advantage over C3 species during low [CO2] of the last ice age, although concurrent reductions in temperatures may have reduced this advantage.  相似文献   

15.
The maximum carboxylation capacity of Rubisco, Vc,max, is an important photosynthetic parameter that is key to accurate estimation of carbon assimilation. The gold‐standard technique for determining Vc,max is to derive Vc,max from the initial slope of an ACi curve (the response of photosynthesis, A, to intercellular CO2 concentration, Ci). Accurate estimates of Vc,max derived from an alternative and rapid “one‐point” measurement of photosynthesis could greatly accelerate data collection and model parameterization. We evaluated the practical application of the one‐point method in six species measured under standard conditions (saturating irradiance and 400 μmol CO2 mol?1) and under conditions that would increase the likelihood for successful estimation of Vc,max: (a) ensuring Rubisco‐limited A by measuring at 300 μmol CO2 mol?1 and (b) allowing time for acclimation to saturating irradiance prior to measurement. The one‐point method significantly underestimated Vc,max in four of the six species, providing estimates 21%–32% below fitted values. We identified ribulose‐1,5‐bisphosphate‐limited A, light acclimation, and the use of an assumed respiration rate as factors that limited the effective use of the one‐point method to accurately estimate Vc,max. We conclude that the one‐point method requires a species‐specific understanding of its application, is often unsuccessful, and must be used with caution.  相似文献   

16.
During the past 25 Myr, partial pressures of atmospheric CO2 (Ca) imposed a greater limitation on C3 than C4 photosynthesis. This could have important downstream consequences for plant nitrogen economy and biomass allocation. Here, we report the first phylogenetically controlled comparison of the integrated effects of subambient Ca on photosynthesis, growth and nitrogen allocation patterns, comparing the C3 and C4 subspecies of Alloteropsis semialata. Plant size decreased more in the C3 than C4 subspecies at low Ca, but nitrogen pool sizes were unchanged, and nitrogen concentrations increased across all plant partitions. The C3, but not C4 subspecies, preferentially allocated biomass to leaves and increased specific leaf area at low Ca. In the C3 subspecies, increased leaf nitrogen was linked to photosynthetic acclimation at the interglacial Ca, mediated via higher photosynthetic capacity combined with greater stomatal conductance. Glacial Ca further increased the biochemical acclimation and nitrogen concentrations in the C3 subspecies, but these were insufficient to maintain photosynthetic rates. In contrast, the C4 subspecies maintained photosynthetic rates, nitrogen‐ and water‐use efficiencies and plant biomass at interglacial and glacial Ca with minimal physiological adjustment. At low Ca, the C4 carbon‐concentrating mechanism therefore offered a significant advantage over the C3 type for carbon acquisition at the whole‐plant scale, apparently mediated via nitrogen economy and water loss. A limiting nutrient supply damped the biomass responses to Ca and increased the C4 advantage across all Ca treatments. Findings highlight the importance of considering leaf responses in the context of the whole plant, and show that carbon limitation may be offset at the expense of greater plant demand for soil resources such as nitrogen and water. Results show that the combined effects of low CO2 and resource limitation benefit C4 plants over C3 plants in glacial–interglacial environments, but that this advantage is lessened under anthropogenic conditions.  相似文献   

17.
This study investigated the effect of elevated CO2 on the post‐fire resprouting response of a grassland system of perennial grass species of Cumberland Plain Woodland. Plants were grown in mixtures in natural soil in mesocosms, each containing three exotic grasses (Nassella neesiana, Chloris gayana, Eragrostis curvula) and three native grasses (Themeda australis, Microlaena stipoides, Chloris ventricosa) under elevated (700 ppm) and ambient (385 ppm) CO2 conditions. Resprouting response after fire at the community‐ and species‐level was assessed. There was no difference in community‐level biomass between CO2 treatments; however, exotic species made up a larger proportion of the community biomass under all treatments. There were species‐level responses to elevated CO2 but no significant interactions found between CO2 and burning or plant status. Two exotic grasses (N. neesiana and E. curvula, a C3 and a C4 species respectively), and one native grass (M. stipoides, a C3 species) significantly increased in biomass, and a native C4 grass (C. ventricosa) significantly decreased in biomass under elevated CO2. These results suggest that although overall productivity of this community may not change with increases in CO2 and fire frequency, the community composition may alter due to differential species responses.  相似文献   

18.
Seedlings of six major European temperate forest tree species (Fagus sylvatica, Acer pseudoplatanus, Quercus robur, Taxus baccata, Abies alba, Pinus sylvestris) were exposed to 360, 500, and 660 μL CO2 L?1 in the understorey of a 120‐y‐old forest over two growing seasons. Seedlings rooted in the natural forest soil within 36 open‐top chambers (12 OTCs per CO2 treatment), each with a different known quantum flux density (QFD) ranging from 0.36 to 2.16 mol m?2 d?1 (= 0.8% to 4.8% of full sun). In contrast to a frequent assumption the natural CO2 concentration in the understorey is close to the ambient concentration in the free atmosphere during daytime. The CO2‐effect on seedling growth differed greatly among species and was strongly codetermined by microsite‐specific QFD. Biomass production in the deep‐shade tolerant species Fagus and Taxus increased by 73% and 37% under elevated CO2 in low QFD microsites but was not significantly different among CO2‐treatments in high QFD microsites. The less shade‐tolerant species Acer, Quercus, and Abies showed no significant response to elevated CO2 in low QFD microsites, but increased their biomass by 39%, 25%, and 55% in high QFD microsites. In the shade‐intolerant Pinus, seedling survival was too low for a safe conclusion. Our data showed that the largest relative responses to increasing CO2 occurred at a comparatively small increase from 360 to 500 μL L?1 with only small and non‐significant changes with a further increase to 660 μL L?1. Subtle shifts in the availability of light can totally reverse interspecific differences in the CO2 response. Given these different responses, we conclude that increasing atmospheric CO2 is likely to induce changes in species composition of temperate forests due to altered chances of recruitment. However, these shifts will depend on light patterns in the understorey, and thus on canopy structure, disturbance patterns and forest management.  相似文献   

19.
The efficiency of C4 photosynthesis in Zea mays, Miscanthus x giganteus and Flaveria bidentis in response to light was determined using measurements of gas exchange, 13CO2 photosynthetic discrimination, metabolite pools and spectroscopic assays, with models of C4 photosynthesis and leaf 13CO2 discrimination. Spectroscopic and metabolite assays suggested constant energy partitioning between the C4 and C3 cycles across photosynthetically active radiation (PAR). Leakiness (φ), modelled using C4 light‐limited photosynthesis equations (φmod), matched values from the isotope method without simplifications (φis) and increased slightly from high to low PAR in all species. However, simplifications of bundle‐sheath [CO2] and respiratory fractionation lead to large overestimations of φ at low PAR with the isotope method. These species used different strategies to maintain similar φ. For example, Z. mays had large rates of the C4 cycle and low bundle‐sheath cells CO2 conductance (gbs). While F. bidentis had larger gbs but lower respiration rates and M. giganteus had less C4 cycle capacity but low gbs, which resulted in similar φ. This demonstrates that low gbs is important for efficient C4 photosynthesis but it is not the only factor determining φ. Additionally, these C4 species are able to optimize photosynthesis and minimize φ over a range of PARs, including low light.  相似文献   

20.
Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long‐term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) to the atmosphere, but how much, at which time‐span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant–soil systems (mesocosms) allowed us to simulate permafrost thaw under near‐natural conditions. We monitored GHG flux dynamics via high‐resolution flow‐through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10–15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO2–C m?2 day?1; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO2–C m?2 day?1, mean ± SD, pre‐ and post‐thaw, respectively). Radiocarbon dating (14C) of respired CO2, supported by an independent curve‐fitting approach, showed a clear contribution (9%–27%) of old carbon to this enhanced post‐thaw CO2 flux. Elevated concentrations of CO2, CH4, and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost–carbon feedback by adding to the atmospheric CO2 burden post‐thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre‐ and post‐thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号