首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
p53作为重要的抑癌基因已经成为一个治疗癌症重点的突破目标之一。直接调节p53基因或调节P53和MDM2蛋白质相互作用是再激活p53基因的两种重要机制。对于表达野生型P53的癌症设计小分子阻断剂阻断MDM2与P53蛋白相互作用是一个很有前景的治疗癌症的方向。文章主要总结了作为治疗癌症的新方法-MDM2-P53蛋白相互作用小分子抑制物的最新研究进展,其中最新的是人工合成化合物Nutlin-3和MI-219。  相似文献   

3.
Antibodies recognize protein targets with great affinity and specificity. However, posttranslational modifications and the presence of intrinsic disulfide‐bonds pose difficulties for their industrial use. The immunoglobulin fold is one of the most ubiquitous folds in nature and it is found in many proteins besides antibodies. An example of a protein family with an immunoglobulin‐like fold is the Cysteine Protease Inhibitors (ICP) family I42 of the MEROPs database for protease and protease inhibitors. Members of this protein family are thermostable and do not present internal disulfide bonds. Crystal structures of several ICPs indicate that they resemble the Ig‐like domain of the human T cell co‐receptor CD8α As ICPs present 2 flexible recognition loops that vary accordingly to their targeted protease, we hypothesize that members of this protein family would be ideal to design peptide aptamers that mimic protein‐protein interactions. Herein, we use an ICP variant from Entamoeba histolytica (EhICP1) to mimic the interaction between p53 and MDM2. We found that a 13 amino‐acid peptide derived from p53 can be introduced in 2 variable loops (DE, FG) but not the third (BC). Chimeric EhICP1‐p53 form a stable complex with MDM2 at a micromolar range. Crystal structure of the EhICP1‐p53(FG)‐loop variant in complex with MDM2 reveals a swapping subdomain between 2 chimeric molecules, however, the p53 peptide interacts with MDM2 as in previous crystal structures. The structural details of the EhICP1‐p53(FG) interaction with MDM2 resemble the interaction between an antibody and MDM2.  相似文献   

4.
MDM2 expression is down-regulated upon E2F1 over-expression, but the mechanism is not well defined. In the current study, we found that E2F1 inhibits MDM2 expression by suppressing its promoter activity. Although E2F1 binds to the MDM2 promoter, the inhibitory effect of E2F1 on the MDM2 promoter does not require the direct binding. We demonstrate that E2F1 inhibits MDM2 promoter activity in a p53-dependent manner. Knockdown of p53 in U2OS cells impairs the inhibitory effect of E2F1 on the MDM2 promoter. Consistent with this observation, E2F1 does not inhibit MDM2 promoter activity in p53-deficient H1299 cells, and the inhibition is restored when p53 is expressed exogenously. Both E2F1 and p53 are up-regulated after DNA damage stimulation. We show that such stimulation induces E2F1 to inhibit MDM2 promoter activity and promote p53 accumulation. Furthermore, inhibition of MDM2 by E2F1 promotes E2F1 induced apoptosis. These data suggest that E2F1 regulates the MDM2-p53 pathway by inhibiting p53 induced up-regulation of MDM2.  相似文献   

5.
目的:构建带Flag标签的MDM2真核表达载体,并检测MDM2与p53的相互作用。方法:从人乳腺文库中PCR扩增MDM2编码序列,将其插入pcDNA3.0-Flag载体,转染293T细胞后用Western印迹检测其在293T细胞中的表达,并通过免疫共沉淀实验检测MDM2与p53的相互作用。结果:双酶切和测序结果表明,Flag-MDM2真核表达载体构建成功,转染293T细胞后成功表达;免疫共沉淀实验证明Flag-MDM2与p53存在相互作用。结论:构建了带Flag标签的人MDM2真核表达载体,并检测了MDM2与p53之间的相互作用,为研究MDM2的功能奠定了基础。  相似文献   

6.
We have discovered and reported potent p53–MDM2 interaction inhibitors possessing dihydroimidazothiazole scaffold. Our lead showed strong activity in vitro, but did not exhibit antitumor efficacy in vivo for the low metabolic stability. In order to obtain orally active compounds, we executed further optimization of our lead by the improvement of physicochemical properties. Thus we furnished optimal compounds by introducing an alkyl group onto the pyrrolidine at the C-2 substituent to prevent the metabolism; and modifying the terminal substituent of the proline motif improved solubility. These optimal compounds exhibited good PK profiles and significant antitumor efficacy with oral administration on a xenograft model using MV4-11 cells having wild type p53.  相似文献   

7.
8.
MDM2 binds to the tumor suppressor protein p53 and regulates the level of p53 in cells. Although it is possible to prepare a small amount of the region of MDM2 that binds to p53, the expression level of this fragment of MDM2 is relatively low, limiting the studies involving this protein. Here, we describe a construct for the optimized bacterial expression and purification of the MDM2 p53 binding domain. We found that the expression level of the soluble MDM2 p53 binding domain in bacteria was increased dramatically by fusing it to its interaction partner, the p53 transactivation peptide. Attachment of the p53 transactivation peptide (residues 17-29) to the N-terminus of MDM2 resulted in a more than 200-fold increase of soluble protein expression of the p53 binding domain in bacteria. To obtain the final MDM2 p53 binding domain (residues 5-109) we inserted a tobacco etch virus protease recognition site between the P53 peptide and the MDM2 p53 binding domain. To weaken the protein/peptide interaction and facilitate the separation of the protein from the complex, we introduced a point mutation of one of the key interaction residues (F19A or W23A) in the p53 peptide. The advantages of our new construct are high yield and easy purification of the MDM2 protein.  相似文献   

9.
In a previous study, a novel anthraquinone analog BW-AQ-101 was identified as a potent inducer of MDM2 degradation, leading to upregulation of p53 and apoptosis in cell culture studies. In animal models of acute lymphocytic leukemia, treatment with BW-AQ-101 led to complete disease remission. In this study, we systematically investigated the effect of substitution patterns of the core anthraquinone scaffold. Through cytotoxicity evaluation in two leukemia cell lines, the structure-activity relationship of thirty-two analogs has been examined. Several analogs with comparable or improved potency over BW-AQ-101 have been identified. Western-blot assays verified the effect of the potent compounds on the MDM2-p53 axis. The study also suggests new chemical space for further optimization work.  相似文献   

10.
11.
Five series of novel 3,4,5-trisubstituted aminothiophene derivatives and analogs were designed and synthesized based on our previous studies. All target compounds were evaluated for their p53–MDM2 binding inhibitory activities and anti-proliferation activities against A549 and PC3 tumor cell lines. Twelve compounds displayed comparable p53–MDM2 binding inhibitory activities to that of Nutlin-3. Among them, compound 7a exhibited marked binding affinity (IC50 = 0.086 μM). In addition, most target compounds showed potent anti-proliferation activities with IC50 values at low micromolar level. A good selective profile for wild-type p53 expression cell line was also observed. Molecular docking analysis was performed as well to predict possible binding modes of target compounds with MDM2.  相似文献   

12.
13.
The field of small-molecule inhibitors of protein–protein interactions is rapidly advancing and the specific area of inhibitors of the p53/MDM2 interaction is a prime example. Several groups have published on this topic and multiple compounds are in various stages of clinical development. Building on the strength of the discovery of RG7112, a Nutlin imidazoline-based compound, and RG7388, a pyrrolidine-based compound, we have developed additional scaffolds that provide opportunities for future development. Here, we report the discovery and optimization of a highly potent and selective series of spiroindolinone small-molecule MDM2 inhibitors, culminating in RO8994.  相似文献   

14.
15.
16.
17.
We have used NMR to study the effects of peptide binding on the N-terminal p53-binding domain of human MDM2 (residues 25-109). There were changes in HSQC-chemical shifts throughout the domain on binding four different p53-derived peptide ligands that were significantly large to be indicative of global conformational changes. Large changes in chemical shift were observed in two main regions: the peptide-binding cleft that directly binds the p53 ligands; and the hinge regions connecting the beta-sheet and alpha-helical structures that form the binding cleft. These conformational changes reflect the adaptation of the cleft on binding peptide ligands that differ in length and amino acid composition. Different ligands may induce different conformational transitions in MDM2 that could be responsible for its function. The dynamic nature of MDM2 might be important in the design of anti-cancer drugs that are targeted to its p53-binding site.  相似文献   

18.
A series of 3,4,5-trisubstituted aminothiophenes were designed, synthesized, and evaluated for their p53–MDM2 binding inhibitory potency and anti-proliferation activities against A549 and PC3 tumor cell lines. Fourteen compounds had appreciably improved MDM2 binding affinities than lead compound MCL0527 (3) and a few compounds showed comparable activities to that of Nutlin-3. Meanwhile, most of the 3,4,5-trisubstituted aminothiophenes displayed better or equivalent anti-proliferation activities against wild-type p53 cell line A549 compared to that of Nutlin-3. Over ten compounds exhibited desirable selective profiles of p53 status. Particularly, compounds 9, 16 and 18 displayed 22-, 6- and 22-fold selectivity of p53 status, respectively, much better than that of Nutlin-3 (fourfold).  相似文献   

19.
20.
The wild-type human MDM2 protooncogene was tested for its ability to modulate apoptotic activity of the de novo expressed p53 tumor suppressor gene in K562 cells. We also studied the role of some cytokines in this phenomenon. K562, a human myeloid leukemia cell line, does not express p53 at the mRNA or protein level. In this study, we stably transfected K562 with eukaryotic vectors containing either normal p53 cDNA (pC53-SN3) or mutated p53 (143Val-->Ala) cDNA (pC53-SCX3). Transfectants expressing WT p53 or those expressing mutant p53 are called K562 SN and K562 SM respectively. Many leukemic cell lines undergo apoptosis when de novo WT p53 is expressed alone. In contrast, while the resulting clones (K562 SN and K562 SM) expressed p53, they did not undergo apoptosis. However, when treated with MDM2 mRNA antisense (MDM2 AS) oligodeoxynucleotides (ODNs), K562 SN demonstrated apoptotic features at both molecular and morphological levels. No change was observed when the other clones (K562 and K562 SM) were treated with MDM2 AS. Apoptosis induced in this manner was associated with a relatively small increase in intracellular calcium [Ca2+]i. Cells cultured in medium previously supplemented with recombinant human (rh) interleukin (IL)-3 and rh-erythropoietin (Epo) did not undergo apoptosis. Moreover, K562 SN cells were induced to differentiate. This differentiation was evaluated by measuring hemoglobin (Hb) level in cellular extracted proteins and by analyzing erythroid colony number and morphology. High Hb synthesis was obtained when K562 SN cells were cultured with cytokines (IL-3 + Epo) combined with MDM2 AS. Our results are consistent with the hypothesis that the function of the proto-oncogene MDM2 is to provide a 'feedback' mechanism for the p53-dependent pathway of apoptosis that could be shunted toward differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号