首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
2.
3.
We studied Polylepis forests along an elevational transect between 3,650 and 4,050 m a.s.l. at the treeline of the moist eastern cordillera in Bolivia to examine changes in above- and below-ground stand structure, leaf and root morphology, and regeneration in relation to stand microclimate. Field measurements and model predictions indicated relatively cold growth conditions of the Polylepis forests. Tree height, stem diameter, and basal area of the stands decreased markedly while stem density increased with elevation. Leaf morphology differed between the two occurring Polylepis species, and trees at the treeline had smaller leaves with higher specific leaf area. In contrast, fine root biomass increased from 37 g m−2 at the lowermost stand to 234 g m−2 at the treeline. Trees of the uppermost stand had higher specific root surface area and a much higher number of root tips per unit dry mass. Thus, root surface area and total number of root tips per unit ground area increased conspicuously from the lowermost stand to the treeline. Density of young growth inside the forest increased towards the treeline, while density in the open grassland decreased with elevation. Young growth originated from sexual reproduction at the lower forest but was comprised exclusively of root suckers at the treeline stand. We conclude that both the marked change in carbon allocation towards the root system, as well as the changes in root morphology with elevation indicate an adaptation to reduced nutrient supply under cold conditions of these Polylepis stands at the treeline in E Bolivia.
Dietrich HertelEmail:
  相似文献   

4.
Biomass productivity is the main favorable trait of candidate bioenergy crops. Miscanthus × giganteus is a promising species, due to its high‐yield potential and positive traits including low nutrient requirements and potential for C sequestration in soils. However, miscanthus productivity appears to be mostly related to water availability in the soil. This is important, particularly in Mediterranean regions where the risk of summer droughts is high. To date, there have been no studies on miscanthus responses under different soil conditions, while only a few have investigated the role of different crop managements, such as irrigation and nitrogen fertilization, in the Mediterranean. Therefore, the effects of contrasting soil textures (i.e. silty‐clay‐loam vs. sandy‐loam) and alternative agricultural intensification regimes (i.e. rainfed vs. irrigated and 0, 50, 100 kg ha?1 nitrogen fertilization), on miscanthus productivity were evaluated at three different harvest times for two consecutive years. Our results confirmed the importance of water availability in determining satisfactory yields in Mediterranean environments, and how soil and site characteristics strongly affect biomass production. We found that the aboveground dry yields varied between 5 Mg ha?1 up to 29 Mg ha?1. Conversely, nitrogen fertilization played only a minor role on crop productivity, and high fertilization levels were relatively inefficient. Finally, a marked decrease, of up to ?40%, in the aboveground yield occurred when the harvest time was delayed from autumn to winter. Overall, our results highlighted the importance of determining crop responses on a site‐by‐site basis, and that decisions on the optimal harvest time should be driven by the biomass end use and other long‐term considerations, such as yield stability and the maintenance of soil fertility.  相似文献   

5.
Significant development has been achieved in nonfullerene organic solar cells. However, most of the high‐efficiency nonfullerene systems are composed of polymer donors and fused‐ring acceptors, and only a few small molecule donors can work well. Herein, a new A–D–A small molecule donor named NDTSR with naphtho[1,2‐b:5,6‐b′]dithiophene (NDT) as building blocks is synthesized. Two energy levels well‐matched fused‐ring acceptors ITIC and IDIC are chosen to construct all‐small‐molecule solar cells with NDTSR, respectively. When mixed with IDIC, a high power conversion efficiency (PCE) of 8.05% is achieved, which is the highest efficiency for NDT‐based small molecule donor. However, the NDTSR:ITIC system only exhibits a low PCE of 1.77%. The big difference in the performance of these two systems should be attributed to the different morphology and phase separation resulting from the crystallinity and aggregation ability of the acceptors. The results demonstrate that NDT‐based small molecule is a promising candidate donor for all‐small‐molecule systems, while the crystallinity of fused‐ring acceptors is a critical factor for optimizing the phase separation in the active layer.  相似文献   

6.
This study examines the amount of biomass loss occurring in Miscanthus × giganteus crop at harvest. The study assesses loss incurred as a direct result of the harvest systems employed to collect the material along with examining how the time of harvest effects the amount of loss occurring over the spring harvest window. Pre harvest losses of 4.8–5.1% were measured prior to harvest. There was no significant difference between pre harvest loss and post harvest loss when a self‐propelled forage harvester fitted with a maize harvesting header was used to harvest the crop. The use of a conditioner mower and baler significantly increased crop losses to 9.4–14.1%. This demonstrates that correct selection of the harvest system can significantly increase biomass recovery. Additional losses were measured at headlands when the mower/baler system was used, but headland losses will not occur when self‐propelled forage harvesters are utilized. Losses were significantly greater in the area beside the swath after the baler pass when compared to prior to baling. This study has shown that correct selection of harvest systems can significantly increase biomass recovery, with no significant difference in pre harvest loss or harvest loss occurring as a result of cutting the M. × giganteus crop at different dates during the harvest window (March 1st, March 25th, April 21st).  相似文献   

7.
Understanding the complex relationship between amino acid sequence and protein behaviors, such as folding and self‐association, is a major goal of protein research. In the present work, we examined the effects of deleting a C‐terminal residue on the intrinsic properties of an amphapathic α‐helix of mastoparan‐B (MP‐B), an antimicrobial peptide with the sequence LKLKSIVSWAKKVL‐NH2. We used circular dichroism and nuclear magnetic resonance to demonstrate that the peptide MP‐B[1‐13] displayed significant unwinding at the N‐terminal helix compared with the parent peptide of MP‐B, as the temperature increased when the residue at position 14 was deleted. Pulsed‐field gradient nuclear magnetic resonance data revealed that MP‐B forms a larger diffusion unit than MP‐B[1‐13] at all experimental temperatures and continuously dissociates as the temperature increases. In contrast, the size of the diffusion unit of MP‐B[1‐13] is almost independent of temperature. These findings suggest that deleting the flexible, hydrophobic amino acid from the C‐terminus of MP‐B is sufficient to change the intrinsic helical thermal stability and self‐association. This effect is most likely because of the modulation of enthalpic interactions and conformational freedom that are specified by this residue. Our results implicate terminal residues in the biological function of an antimicrobial peptide. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
A conserved cis proline residue located in the active site of Thermotoga maritima acetyl esterase (TmAcE) from the carbohydrate esterase family 7 (CE7) has been substituted by alanine. The residue was known to play a crucial role in determining the catalytic properties of the enzyme. To elucidate the structural role of the residue, the crystal structure of the Pro228Ala variant (TmAcEP228A) was determined at 2.1 Å resolution. The replacement does not affect the overall secondary, tertiary, and quaternary structures and moderately decreases the thermal stability. However, the wild type cis conformation of the 227–228 peptide bond adopts a trans conformation in the variant. Other conformational changes in the tertiary structure are restricted to residues 222–226, preceding this peptide bond and are located away from the active site. Overall, the results suggest that the conserved proline residue is responsible for the cis conformation of the peptide and shapes the geometry of the active site. Elimination of the pyrrolidine ring results in the loss of van der Waals and hydrophobic interactions with both the alcohol and acyl moeities of the ester substrate, leading to significant impairment of the activity and perturbation of substrate specificity. Furthermore, a cis‐to‐trans conformational change arising out of residue changes at this position may be associated with the evolution of divergent activity, specificity, and stability properties of members constituting the CE7 family. Proteins 2017; 85:694–708. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
Retromer is an endosomal multi‐protein complex that organizes the endocytic recycling of a vast range of integral membrane proteins. Here, we establish an additional retromer function in controlling the activity and localization of the late endosomal small GTPase RAB7. Surprisingly, we found that RAB7 not only decorates late endosomes or lysosomes, but is also present on the endoplasmic reticulum, trans‐Golgi network, and mitochondrial membranes, a localization that is maintained by retromer and the retromer‐associated RAB7‐specific GAP TBC1D5. In the absence of either TBC1D5 or retromer, RAB7 activity state and localization are no longer controlled and hyperactivated RAB7 expands over the entire lysosomal domain. This lysosomal accumulation of hyperactivated RAB7 results in a striking loss of RAB7 mobility and overall depletion of the inactive RAB7 pool on endomembranes. Functionally, we establish that this control of RAB7 activity is not required for the recycling of retromer‐dependent cargoes, but instead enables the correct sorting of the autophagy related transmembrane protein ATG9a and autophagosome formation around damaged mitochondria during Parkin‐mediated mitophagy.  相似文献   

10.
The red seaweed Gracilariopsis is an important crop extensively cultivated in China for high‐quality raw agar. In the cultivation site at Nanao Island, Shantou, China, G. lemaneiformis experiences high variability in environmental conditions like seawater temperature. In this study, G. lemaneiformis was cultured at 12, 19, or 26°C for 3 weeks, to examine its photosynthetic acclimation to changing temperature. Growth rates were highest in G. lemaneiformis thalli grown at 19°C, and were reduced with either decreased or increased temperature. The irradiance‐saturated rate of photosynthesis (Pmax) decreased with decreasing temperature, but increased significantly with prolonged cultivation at lower temperatures, indicating the potential for photosynthesis acclimation to lower temperature. Moreover, Pmax increased with increasing temperature (~30 μmol O2 · g?1FW · h?1 at 12°C to 70 μmol O2 · g?1FW · h?1 at 26°C). The irradiance compensation point for photosynthesis (Ic) decreased significantly with increasing temperature (28 μmol photons · m?2 · s?1 at high temperature vs. 38 μmol photons · m?2 · s?1 at low temperature). Both the photosynthetic light‐ and carbon‐use efficiencies increased with increasing growth or temperatures (from 12°C to 26°C). The results suggested that the thermal acclimation of photosynthetic performance of G. lemaneiformis would have important ecophysiological implications in sea cultivation for improving photosynthesis at low temperature and maintaining high standing biomass during summer. Ongoing climate change (increasing atmospheric CO2 and global warming) may enhance biomass production in G. lemaneiformis mariculture through the improved photosynthetic performances in response to increasing temperature.  相似文献   

11.
Physicochemical properties viz., aggregation, molar mass, shape, and size of chicory inulin in solution were determined by fluorimetry, DLS, SLS, TEM, and viscometry methods. The thermal stability of the biopolymer was examined by TGA, DTA, and DSC measurements. The water vapor adsorption of desiccated inulin was also studied by the isopiestic method, and the data were analyzed in the light of the BET equation. On the basis of the obstruction to ion conductance by the inulin aggregates in solution and analysis of the data, the extent of hydration of inulin in solution was estimated. The result was coupled with the intrinsic viscosity, [η], of inulin to ascertain the shape of the biopolymer aggregates in aqueous solution. The critical aggregation concentration (cac) of inulin in aqueous as well as in salt solution was assessed by fluorimetry. The weight average molar mass, , of inulin monomer and its aggregate was found to be 4468 and 1.03 × 106 g/mol, respectively, in aqueous solution. This aggregated mass was 2.4 × 106 g/mol in 0.5M NH4SCN solution. The [η] values of the soft supramolecular aggregates in solution (without and with salt) were small and comparable with globular proteins evidencing spherical geometry of the biopolymer aggregates as supported by the TEM results. In DMSO, rod‐like aggregates of inulin was found by the TEM study. The [η] of the biopolymer in the DMSO medium was therefore, higher than that in the aqueous medium. Unlike aqueous medium, the aggregation in DMSO was not associated with a cac. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 687–699, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号