首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From the aerial parts of Salsola oppositofolia, S. soda and S. tragus an alkaloid extract was obtained and tested to evaluate antioxidant and anti-cholinesterase activities. The in vitro study of the antioxidant activity by the DPPH method revealed a significant activity of Salsola alkaloid extracts with IC50 values ranging from 16.30 μg/mL for S. oppositifolia to 26.17 μg/mL for S. tragus. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were evaluated. S. tragus alkaloid extract exerted the highest inhibitory activity against AChE (IC50 of 30.2 μg/mL) and BChE (IC50 of 26.5 μg/mL). Interestingly, S. soda and S. oppositifolia exhibited a selective inhibitory activity against BChE with IC50 values of 34.3 μg/mL and 32.7 μg/mL, respectively. Tetrahydroisoquinoline alkaloids were identified and quantified by GC/MS analysis.  相似文献   

2.
This study aimed to investigate the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity of the essential oils from Pinus nigra subsp. nigra, P. nigra var. calabrica, and P. heldreichii subsp. leucodermis. This activity is relevant to the treatment of Alzheimer’s disease (AD), since cholinesterase drugs are currently the only drugs available to treat AD. P. heldreichii subsp. leucodermis exhibited the most promising activity, with IC50 values of 51.1 and 80.6?μg/mL against AChE and BChE, respectively. An interesting activity against AChE was also observed with P. nigra subsp. nigra essential oil, with an IC50 value of 94.4?μg/mL. Essential oils were analyzed by GC and GC-MS with the purpose of investigating their relationships with the observed activities. Among the identified constituents, terpinolene, β-phellandrene, linalyl acetate, trans-caryophyllene, and terpinen-4-ol were tested. trans-Caryophyllene and terpinen-4-ol inhibited BChE with IC50 values of 78.6 and 107.6?μg/mL, respectively. β-Phellandrene was selective against AChE (IC50 value of 120.2?μg/mL).  相似文献   

3.
In the current study, the ethanol extracts of flower, stem, and root parts of two endemic Turkish species, e. g., Haplophyllum sahinii O. Tugay & D. Uluku? and H. vulcanicum Boiss . & Heldr ., were screened against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) associated with Alzheimer's disease as well as tyrosinase (TYR) linked to Parkinson's disease using ELISA microplate assay at 200 μg/mL. Among the extracts, the highest inhibition was caused by the stem extract of H. sahinii against BChE (IC50=64.93±1.38 μg/mL). Consistently, all of the extracts were found to exert a selective inhibition towards BChE to some extent. It was only the root extract of H. vulcanicum that could inhibit AChE at low level (IC50=203.18±5.33 μg/mL). None of the extracts displayed an inhibition over 50 % against TYR. Metabolite profiling of the extracts was achieved by a highly hyphenated liquid chromatographic mass spectrometric technique (HPLC‐DAD‐ESI‐Q‐TOF‐MS/MS), which revealed the presence of furoquinoline (β‐fagarine, γ‐fagarine) and amide (tubasenicine, tubacetine) alkaloids; furano‐ (rutamarin), pyrano‐ (xanthyletine), and geranyloxy coumarins; phenylpropanoid (secoisolariciresinol), arylnaphthalene (mono‐O‐acetyldiphyllin apioside), and dibenzylbutyrolactone (kusunokinin, haplomyrfolin) lignans. Several important differences were observed between the extracts analyzed. β‐Fagarine was the major alkaloid in H. vulcanicum, whereas γ‐fagarine was present only in the roots of both Haplophyllum species; moreover, secoisolariciresinol and secoisolariciresinol dimethyl ether were the main lignans in the stems and flowers. This is the first study identifying ChE and TYR inhibitory effect and metabolic profiles of H. vulcanicum and H. sahinii.  相似文献   

4.
Indanone derivatives containing meta/para-substituted aminopropoxy benzyl/benzylidene moieties were designed based on the structures of donepezil and ebselen analogs as the cholinesterase inhibitors. The designed compounds were synthesized and their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were measured. Inhibitory potencies (IC50 values) for the synthesized compounds ranged from 0.12 to 11.92 μM and 0.04 to 24.36 μM against AChE and BChE, respectively. Compound 5 c showed the highest AChE inhibitory potency with IC50 value of 0.12 μM, whereas the highest BChE inhibition was achieved by structure 7 b (IC50=0.04 μM). Structure-activity relationship (SAR) analysis revealed that there is no significant difference between meta and para-substituted derivatives in AChE and BChE inhibition. However, the most potent AChE inhibitor 5 c belongs to meta-substituted compounds, while the most active BChE inhibitor is para-substituted derivative 7 b . The order of enzyme inhibition potency based on the substituted amine group is dimethyl amine>piperidine>morpholine. Compounds containing C=C linkage are more potent AChE inhibitors than the corresponding saturated structures. Molecular docking studies indicated that 5 c interacts with AChE in a very similar way to that observed experimentally for donepezil. The introduced indanone-aminopropoxy benzylidenes could be used in drug-discovery against Alzheimer's disease.  相似文献   

5.
The present study describes for the first time the in vitro properties (inhibition of NO production and anticholinesterase) of Phagnalon saxatile (L.) Cass. (Asteraceae). The methanolic extract showed antioxidant activity that was measured by DPPH assay and β-carotene bleaching test. The same extract inhibited NO production in the murine monocytic macrophage cell line RAW 264.7. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition was assessed by modifications of Ellman’s method. Purification of the MeOH extract of P. saxatile allowed the isolation of phenolic compounds. Among them, the compounds that most effectively inhibited lipopolysaccharide-induced NO production were caffeic acid and methylchlorogenic acid, with IC50 values of 7?μg/mL and 12?μg/mL, respectively. Luteolin and 3,5-dicaffeoylquinic acid exhibited the most promising activity against AChE with an IC50 of 25.2 and 54.5?μg/mL, respectively, while caffeic acid and luteolin exhibited higher activity against BChE with an IC50 of 32.2 and 37.2?μg/mL, respectively.  相似文献   

6.
Abstract

Cardiospermum halicacabum is widely used in traditional medicine. Previous studies have focused on the aerial parts, while the seeds have been poorly investigated. This work aimed to analyse the chemical composition of extracts from aerial parts and seeds obtained using Naviglio and Soxhlet (PN, PS, and SN, SS, respectively), the inhibitory properties against tyrosinase, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) and the antioxidant effects. PN total extract showed significant anti-tyrosinase activity (IC50 value of 10.8?µg/mL). After partitioning with n-hexane, an HPLC method for analysing chemical constituents was established. Apigenin, luteolin, and apigenin-7-O-glucoside are the predominant constituents. SN n-hexane fraction was the most active inhibitor of BChE (IC50 of 57.9?µg/mL). Gas chromatography-mass spectrometry analysis revealed fatty acids, including eicosanoic acid, methyl 11-eicosenoate and oleic acid, as the major constituents. These findings suggest the potentiality of both seeds and aerial parts of C. halicacabum in the treatment of neurological disorders.  相似文献   

7.
Tanacetum L. species traditionally used for insecticidal purposes as well as in folk medicine for their antitumor, antimicrobial, antifungal activities. In our previous study a novel sesquiterpene lactone and triterpene lactone together with 12 known flavonoids, coumarin and a triterpene were isolated from T. chiliophyllum var. oligocephalum and T. chiliophyllum var. monocephalum extracts which have insecticidal and antimicrobial activity. In this study, cytotoxic, antimicrobial activities and acetylcholinesterase (AChE), butyrylcholinesterase (BChE) inhibitory effects of pure compounds isolated from these plants were investigated. The tested compounds showed AChE and BChE inhibition which ranged between 7.20–80.37% and 9.19%–76.99% respectively. The highest AChE and BChE inhibition was observed for ulubelenolide which afforded 80.37% and 76.99% inhibition respectively. The cytotoxic effect of the compounds ranged between 22.34–49.77 μg/mL IC50 values. Highest cytotoxic activity was observed against MCF-7 and HEK 293 cell line by 5–hydroxy-3′,4′,7-trimethoxy flavone and 5-hydroxy-3′,4′,6,7-tetramethoxyflavone that produced 25.80 ± 0.17 and 22.34 ± 0.70 IC50 values respectively. Compounds eupatilin, cirsilineol, 5–hydroxy-3′,4′,7-trimethoxy flavone and ulubelenolide showed significant antimicrobial effect on C. albicans with 7.8 μg/mL MIC. The new compound ulubelenolide afforded high AChE and BChE inhibition as well as high antifungal activity. In our opinion activity of this substance should be evaluated further against other fungal species.  相似文献   

8.
The aim of this work was to investigate the enzyme inhibition, antioxidant activity, and phenolic compounds of Lecokia cretica (Lam .) DC. Acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α‐glycosidase enzymes were strongly inhibited by the L. cretica extracts. IC50 values for the three enzymes were found as 3.21 mg/mL, 2.1 mg/mL, and 2.07 mg/mL, respectively. Antioxidant activities were examined in both aqueous and ethanol (EtOH) extracts using CUPRAC, FRAP, and DPPH method. Also, the phenolic compounds of the endemic plant were identified and quantified by using HPLC/MS/MS. According to the results, the extracts have remarkable antioxidant activities. The most abundant phenolic acids of L. cretica in EtOH extract were determined as quinic acid (12.76 mg/kg of crude extract), chlorogenic acid (3.39 mg/kg), and malic acid (2.38 mg/kg).  相似文献   

9.
Cholinergic therapy based on cholinesterase (ChE) inhibitory drugs is the mainstay for the treatment of Alzheimer's disease. Therefore, an extensive research has been continuing for the discovery of drug candidates as inhibitors of acetyl‐ and butyrylcholinesterase. In this study, two natural molecules, e. g. hyperforin and hyuganin C were tested in vitro for their AChE and BChE inhibitory activity. Both of the compounds were ineffective against AChE, whereas hyperforin (IC50=141.60±3.39 μm ) and hyuganin C (IC50=38.86±1.69 μm ) were found to be the highly active inhibitors of BChE as compared to galantamine (IC50=46.58±0.91 μm ) which was used as the reference. Then, these molecules were further proceeded to molecular docking experiments in order to establish their interactions at the active site of BChE. The molecular docking results indicated that both of them are able to block the access to key residues in the catalytic triad of the enzyme, while they complement some of the hydrophobic residues of the cavity, what is consistent with our in vitro data. While both compounds were predicted as mutagenic, only hyuganin C showed hepatotoxicity in in silico analysis. According to whole outcomes that we obtained, particularly hyuganin C besides hyperforin are the promising BChE inhibitors, which can be the promising compounds for AD therapy.  相似文献   

10.
Apilarnil is 3–7 days old drone larvae. It is an organic bee product known to be rich in protein. In this study, the biological activities of Apilarnil were determined by its antioxidant and enzyme inhibition effects. Antioxidant activities were determined by Fe3+, Cu2+, Fe3+-TPTZ ((2,4,6-tris(2-pyridyl)-s-triazine), reducing ability and 1,1-diphenyl-2-picrylhydrazyl (DPPH⋅) scavenging assays. Also, its enzyme inhibition effects were tested against carbonic anhydrase I and II isoenzymes (hCA I, hCA II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Antioxidant activity of Apilarnil was generally lower than the standard molecules in the applied methods. In DPPH⋅ radical scavenging assay, Apilarnil exhibited higher radical scavenging than some standards. Enzyme inhibition results towards hCA I (IC50: 14.2 μg/mL), hCA II: (IC50: 11.5 μg/mL), AChE (IC50: 22.1 μg/mL), BChE (IC50: 16.1 μg/mL) were calculated. In addition, the quantity of 53 different phytochemical compounds of Apilarnil was determined by a validated method by LC/MS/MS. Compounds with the highest concentrations (mg analyte/g dry extract) were determined as quinic acid (1091.045), fumaric acid (48.714), aconitic acid (47.218), kaempferol (39.946), and quercetin (27.508). As a result, it was determined that Apilarnil had effective antioxidant profile when compared to standard antioxidants.  相似文献   

11.
In the study, water, ethanol, methanol, dichloromethane, and acetone extracts of Asparagus officinalis L. were obtained by maceration. DPPH⋅, ABTS⋅+, FRAP, and CUPRAC methods determined the antioxidant capacities of all extracts. Moreover, the in vitro effects of extracts on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase (CA)-I, CA-II and α-Glycosidase were investigated. At a 10 μg/ml concentration, the extract with the highest Fe3+ reduction capacity was ethanol (AE), and the extract with the highest Cu2+ reduction capacity was acetone (AA). AE for AChE (IC50=21.19 μg/ml) and α-Glycosidase (IC50: 70.00 μg/ml), methanol (AM) for BChE (IC50=17.33 μg/ml), CA−I and II (IC50=79.65 and 36.09 μg/ml, respectively) showed the most potent inhibition effect. The content analysis of acetone extract was performed with LC/MS-MS, the first three phytochemicals found most were p-Coumaric acid, rutin, and 4-hydroxybenzoic acid (284.29±3.97, 135.39±8.19, and 102.06±5.51 μg analyte/g extract, respectively).  相似文献   

12.
Based on the presence of dialkyl phosphate moiety, we evaluated twenty-seven salicylanilide diethyl phosphates (diethyl [2-(phenylcarbamoyl)phenyl] phosphates) for the inhibition of acetylcholinesterase (AChE) from electric eel (Electrophorus electricus L.) and butyrylcholinesterase (BChE) from equine serum. Ellman’s spectrophotometric method was used. The inhibitory activity (expressed as IC50 values) was compared with that of the established drugs galantamine and rivastigmine. Salicylanilide diethyl phosphates showed significant activity against both cholinesterases with IC50 values from 0.903 to 86.3 μM. IC50s for BChE were comparatively lower than those obtained for AChE. All of the investigated compounds showed higher inhibition of AChE than rivastigmine, and six of them inhibited BChE more effectively than both rivastigmine and galantamine. In general, derivatives of 4-chlorosalicylic acid showed enhanced activity when compared to derivatives of 5-halogenated salicylic acids, especially against BChE. The most effective inhibitor of AChE was O-{5-chloro-2-[(3-bromophenyl)carbamoyl]phenyl} O,O-diethyl phosphate with IC50 of 35.4 μM, which is also one of the most potent inhibitors of BChE. O-{5-Chloro-2-[(3,4-dichlorophenyl)carbamoyl]phenyl} O,O-diethyl phosphate exhibited in vitro the strongest inhibition of BChE (0.90 μM). Salicylanilide diethyl phosphates act as pseudo-irreversible cholinesterases inhibitors.  相似文献   

13.
This current study described the design and synthesis of a series of derivatives based on a natural pyranoisaflavone, which was obtained from the seeds of Millettia pachycarpa and displayed attractive BChE inhibition and high selectivity in our previous study. The inhibitory potential of all derivatives against two cholinesterases was evaluated. Only a few compounds demonstrated AChE inhibitory activity at the tested concentrations, while 26 compounds showed significant inhibition on BChE (the IC50 values varied from 9.34 μM to 0.093 μM), most of them presented promising selectivity to ward BChE. Prediction of ADME properties for 7 most active compounds was performed. Among them, 9g (IC50 = 222 nM) and 9h (IC50 = 93 nM) were found to be the most potent BChE inhibitors with excellent selectivity over AChE (SI ratio = 1339 and 836, respectively). The kinetic analysis demonstrated both of them acted as mixed-type BChE inhibitors, while the molecular docking results indicated that they interacted with both residues in the catalytic active site. A cytotoxicity test on PC12 cells showed that both 9g and 9h had a therapeutic safety range similar to tacrine. Overall, the results indicate that 9h could be a good candidate of BChE inhibitors.  相似文献   

14.
Terminalia citrina (T. citrina) belongs to the Combretaceae family and is included in the class of medicinal plants in tropical countries such as Bangladesh, Myanmar, and India. The antioxidant activities of lyophilized water (WTE) and alcohol extracts (ETE) of T. citrina fruits, their phenolic content by LC-HRMS, and their effects on cholinesterases (ChEs; AChE, acetylcholinesterase, and BChE, butyrylcholinesterase) were investigated. Especially ten different analytical methods were applied to determine the antioxidant capacity. Compared with similar studies for natural products in the literature, it was determined that both WTE and ETE exhibited strong antioxidant capacity. Syringe and ellagic acids were higher than other acids in ETE and WTE. IC50 values for ETE and WTE in DPPH radical and ABTS⋅+ scavenging activities were calculated as 1.69–1.68 μg mL−1 and 6.79–5.78 μg mL−1, respectively. The results of the biological investigations showed that ETE and WTE had an inhibition effect against ChEs, with IC50 values of 94.87 and 130.90 mg mL−1 for AChE and 262.55 and 279.70 mg mL−1 for BChE, respectively. These findings indicate that with the prominence of herbal treatments, T. citrina plant may guide the literature in treating Alzheimer's Disease, preventing oxidative damage, and mitochondrial dysfunction.  相似文献   

15.
Based on the presence of carbamate moiety, twenty salicylanilide N-monosubstituted carbamates concomitantly with their parent salicylanilides and five newly prepared 4-chlorophenyl carbamates obtained from isocyanates were investigated using Ellman’s method for their in vitro inhibitory activity against acetylcholinesterase (AChE) from electric eel and butyrylcholinesterase (BChE) from equine serum. The carbamates and salicylanilides exhibited mostly a moderate inhibition of both cholinesterase enzymes with IC50 values ranging from 5 to 235 µM. IC50 values for AChE were in a narrower concentration range when compared to BChE, but many of the compounds produced a balanced inhibition of both cholinesterases. The derivatives were comparable or superior to rivastigmine for AChE inhibition, but only a few of carbamates also for BChE. Several structure-activity relationships were identified, e.g., N-phenethylcarbamates produce clearly favourable BChE inhibition. The compounds also share convenient physicochemical properties for CNS penetration.  相似文献   

16.
A series of benzamide and picolinamide derivatives containing dimethylamine side chain (4a4c and 7a7i) were synthesised and evaluated for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity in vitro. Structure–activity relationship investigation revealed that the substituted position of dimethylamine side chain markedly influenced the inhibitory activity and selectivity against AChE and BChE. In addition, it seemed that the bioactivity of picolinamide amide derivatives was stronger than that of benzamide derivatives. Among them, compound 7a revealed the most potent AChE inhibitory activity (IC50: 2.49?±?0.19?μM) and the highest selectivity against AChE over BChE (Ratio: 99.40). Enzyme kinetic study indicated that compound 7a show a mixed-type inhibition against AChE. The molecular docking study revealed that this compound can bind with both the catalytic site and the peripheral site of AChE.  相似文献   

17.
Novel mono and bis spiropyrrolidine derivatives were synthesized via an efficient ionic liquid mediated, 1,3-dipolar cycloaddition methodology and evaluated in vitro for their AChE and BChE inhibitory activities in search for potent cholinesterase enzyme inhibitors. Most of the synthesized compounds displayed remarkable AChE inhibitory activities with IC50 values ranging from 1.68 to 21.85 μM, wherein compounds 8d and 8j were found to be most active inhibitors against AChE and BChE with IC50 values of 1.68 and 2.75 μM, respectively. Molecular modeling simulation on Torpedo californica AChE and human BChE receptors, showed good correlation between IC50 values and binding interaction template of the most active inhibitors docked into the active site of their relevant enzymes.  相似文献   

18.
In this work, a novel series of arylisoxazole‐phenylpiperazines were designed, synthesized, and evaluated toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Our results revealed that [5‐(2‐chlorophenyl)‐1,2‐oxazol‐3‐yl](4‐phenylpiperazin‐1‐yl)methanone ( 5c ) was the most potent AChE inhibitor with IC50 of 21.85 μm . It should be noted that most of synthesized compounds showed no BChE inhibitory activity and [5‐(2‐fluorophenyl)‐1,2‐oxazol‐3‐yl](4‐phenylpiperazin‐1‐yl)methanone ( 5a ) was the most active anti‐BChE derivative (IC50=51.66 μm ). Also, kinetic studies for the AChE and BChE inhibitory activity of compounds 5c and 5a confirmed that they have simultaneously bound to the catalytic site (CS) and peripheral anionic site (PAS) of both AChE and BChE. Furthermore, docking study of compound 5c showed desired interactions of that compound with amino acid residues located in the active and peripheral anionic sites. Compound 5c was also evaluated for its BACE1 inhibitory activity and demonstrated IC50=76.78 μm . Finally, neuroprotectivity of compound 5c on Aβ‐treated neurotoxicity in PC12 cells depicted low activity.  相似文献   

19.
In this work, we describe the preparation of some new Tacrine analogues modified with a pyranopyrazole moiety. A one-pot multicomponent reaction of 3-methyl-1H-pyrazol-5(4H)-one, aryl(or hetero)aldehydes, malononitrile and cyclohexanone involving a Friedländer condensation led to the title compounds. The synthesized heterocyclic analogues of this molecule were evaluated in vitro for their AChE and BChE inhibitory activities in search for potent cholinesterase enzyme inhibitors. Most of the synthesized compounds displayed remarkable AChE inhibitory activities with IC50 values ranging from 0.044 to 5.80?µM, wherein compounds 5e and 5j were found to be most active inhibitors against AChE with IC50 values of 0.058 and 0.044?µM respectively. Molecular modeling simulation on AChE and BChE receptors, showed good correlation between IC50 values and binding interaction template of the most active inhibitors docked into the active site of their relevant enzymes.  相似文献   

20.
Novel thiazolopyrimidine derivatives have been synthesized via microwave assisted, domino cascade methodology in ionic liquid and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Among the newly synthesized compounds 6d, 6a, 6e and 6b displayed higher AChE inhibitory activity than standard drug, galanthamine, with IC50 values of 0.53, 1.47, 1.62 and 2.05 μM, respectively. Interestingly, all the compounds except for 6mr and 6x displayed higher BChE inhibitory potentials than galanthamine with IC50 values ranging from 1.09 to 18.56 μM. Molecular docking simulations for 6d possessing the most potent AChE and BChE inhibitory activities, disclosed its binding interactions at the active site gorge of AChE and BChE enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号