首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background and AimsRhizosheaths are defined as the soil adhering to the root system after it is extracted from the ground. Root hairs and mucilage (root exudates) are key root traits involved in rhizosheath formation, but to better understand the mechanisms involved their relative contributions should be distinguished.MethodsThe ability of three species [barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu)] to form a rhizosheath in a sandy loam soil was compared with that of their root-hairless mutants [bald root barley (brb), maize root hairless 3 (rth3) and root hairless 1 (Ljrhl1)]. Root hair traits (length and density) of wild-type (WT) barley and maize were compared along with exudate adhesiveness of both barley and maize genotypes. Furthermore, root hair traits and exudate adhesiveness from different root types (axile versus lateral) were compared within the cereal species.Key ResultsPer unit root length, rhizosheath size diminished in the order of barley > L. japonicus > maize in WT plants. Root hairs significantly increased rhizosheath formation of all species (3.9-, 3.2- and 1.8-fold for barley, L. japonicus and maize, respectively) but there was no consistent genotypic effect on exudate adhesiveness in the cereals. While brb exudates were more and rth3 exudates were less adhesive than their respective WTs, maize rth3 bound more soil than barley brb. Although both maize genotypes produced significantly more adhesive exudate than the barley genotypes, root hair development of WT barley was more extensive than that of WT maize. Thus, the greater density of longer root hairs in WT barley bound more soil than WT maize. Root type did not seem to affect rhizosheath formation, unless these types differed in root length.ConclusionsWhen root hairs were present, greater root hair development better facilitated rhizosheath formation than root exudate adhesiveness. However, when root hairs were absent root exudate adhesiveness was a more dominant trait.  相似文献   

2.
Higher plant diversity is often associated with higher soil microbial biomass and diversity, which is assumed to be partly due to elevated root exudate diversity. However, there is little experimental evidence that diversity of root exudates shapes soil microbial communities. We tested whether higher root exudate diversity enhances soil microbial biomass and diversity in a plant diversity gradient, thereby negating significant plant diversity effects on soil microbial properties. We set up plant monocultures and two‐ and three‐species mixtures in microcosms using functionally dissimilar plants and soil of a grassland biodiversity experiment in Germany. Artificial exudate cocktails were added by combining the most common sugars, organic acids, and amino acids found in root exudates. We applied four different exudate cocktails: two exudate diversity levels (low‐ and high‐diversity) and two nutrient‐enriched levels (carbon‐ and nitrogen‐enriched), and a control with water only. Soil microorganisms were more carbon‐ than nitrogen‐limited. Cultivation‐independent fingerprinting analysis revealed significantly different soil microbial communities among exudate diversity treatments. Most notably and according to our hypothesis, adding diverse exudate cocktails negated the significant plant diversity effect on soil microbial properties. Our findings provide the first experimental evidence that root exudate diversity is a crucial link between plant diversity and soil microorganisms.  相似文献   

3.
Certain soil microorganisms can improve plant growth, and practices that encourage their proliferation around the roots can boost production and reduce reliance on agrochemicals. The beneficial effects of the microbial inoculants currently used in agriculture are inconsistent or short-lived because their persistence in soil and on roots is often poor. A complementary approach could use root exudates to recruit beneficial microbes directly from the soil and encourage inoculant proliferation. However, it is unclear whether the release of common organic metabolites can alter the root microbiome in a consistent manner and if so, how those changes vary throughout the whole root system. In this study, we altered the expression of transporters from the ALUMINUM-ACTIVATED MALATE TRANSPORTER and the MULTIDRUG AND TOXIC COMPOUND EXTRUSION families in rice (Oryza sativa L.) and wheat (Triticum aestivum L.) and tested how the subsequent release of their substrates (simple organic anions, including malate, citrate, and γ-amino butyric acid) from root apices affected the root microbiomes. We demonstrate that these exudate compounds, separately and in combination, significantly altered microbiome composition throughout the root system. However, the root type (seminal or nodal), position along the roots (apex or base), and soil type had a greater influence on microbiome structure than the exudates. These results reveal that the root microbiomes of important cereal species can be manipulated by altering the composition of root exudates, and support ongoing attempts to improve plant production by manipulating the root microbiome.

One-sentence summary: The root microbiome of rice and wheat can be manipulated by altering the activity of root transporters and exudates.  相似文献   

4.
We found significant genetic variation in the ability of wheat (Triticum aestivum) to form rhizosheaths on acid soil and assessed whether differences in aluminium (Al(3+) ) tolerance of root hairs between genotypes was the physiological basis for this genetic variation. A method was developed to rapidly screen rhizosheath size in a range of wheat genotypes. Backcrossed populations were generated from cv Fronteira (large rhizosheath) using cv EGA-Burke (small rhizosheath) as the recurrent parent. A positive correlation existed between rhizosheath size on acid soil and root hair length. In hydroponic experiments, root hairs of the backcrossed lines with large rhizosheaths were more tolerant of Al(3+) toxicity than the backcrossed lines with small rhizosheaths. We conclude that greater Al(3+) tolerance of root hairs underlies the larger rhizosheath of wheat grown on acid soil. Tolerance of the root hairs to Al(3+) was largely independent of the TaALMT1 gene which suggests that different genes encode the Al(3+) tolerance of root hairs. The maintenance of longer root hairs in acid soils is important for the efficient uptake of water and nutrients.  相似文献   

5.
Root exudates released into soil have important functions in mobilizing metal micronutrients and for causing selective enrichment of plant beneficial soil micro-organisms that colonize the rhizosphere. Analysis of plant root exudates typically has involved chromatographic methods that rely on a priori knowledge of which compounds might be present. In the research reported here, the combination of multinuclear and 2-D NMR with GC-MS and high-resolution MS provided de novo identification of a number of components directly in crude root exudates of different plant types. This approach was applied to examine the role of exudate metal ion ligands (MIL) in the acquisition of Cd and transition metals by barley and wheat. The exudation of mugineic acids and malate was enhanced by Fe deficiency. which in turn led to an increase in the tissue content of Cu, Mn, and Zn. The presence of elevated Cd maintained at a free activity pCd of 8.8 (10(-8.8) M), resulted in reduced phytosiderophore production by Fe deficient plants. The buffer morpholinoethane sulfonate (MES), which is commonly used in chelator-buffering nutrient solutions, was detected in the root exudate mixture, suggesting uptake and re-secretion of this compound by the roots. The ability to detect this compound in complex mixtures containing organic acids, amino acids, and other substances suggests that the analytical methods used here provide an unbiased method for simultaneous detection of all major components contained in root exudates.  相似文献   

6.
Abstract

Root exudates are considered to have an important role in mobility and bioavailability of heavy metals. High molecular weight (HMW) substances are the main components of root exudates, however, knowledge about their interactions with heavy metals is lacking. In the present study, Pb(II) complexation of the HMW fluorescent fractions in root exudates from Salicornia europaea L. was investigated using excitation emission matrix (EEM) fluorescence spectroscopy. Two protein-like fluorescence peaks were identified in the EEM spectrum of root exudates. The fluorescence of both peaks was clearly quenched by Pb(II). The values of conditional stability constants, log Ka, for these two protein-like fluorescence peaks were 4.14 and 3.79. This indicates that the fluorescent substances are strong Pb(II) complexing organic ligands.  相似文献   

7.
Chemotaxis to plant root exudates is supposed to be a prerequisite for efficient root colonization by rhizobacteria. This is a highly multifactorial process since root exudates are complex compound mixtures of which components are recognized by different chemoreceptors. Little information is available as to the key components in root exudates and their receptors that drive colonization related chemotaxis. We present here the first global assessment of this issue using the plant growth-promoting rhizobacterium (PGPR) Bacillus velezensis SQR9 (formerly B. amyloliquefaciens). This strain efficiently colonizes cucumber roots, and here, we show that chemotaxis to cucumber root exudates was essential in this process. We conducted chemotaxis assays using cucumber root exudates at different concentrations, individual exudate components as well as recomposed exudates, taking into account their concentrations detected in root exudates. Results indicated that two key chemoreceptors, McpA and McpC, were essential for root exudate chemotaxis and root colonization. Both receptors possess a broad ligand range and recognize most of the exudate key components identified (malic, fumaric, gluconic and glyceric acids, Lys, Ser, Ala and mannose). The remaining six chemoreceptors did not contribute to exudate chemotaxis. This study provides novel insight into the evolution of the chemotaxis system in rhizobacteria.  相似文献   

8.
Yu L  Zhou Y  Knox JP 《Planta》2011,234(3):487-499
A range of molecular probes for cell wall polysaccharides has been used to explore the structure and location of water-extracted pectic polysaccharides occurring in fractions isolated from ginseng roots. The LM19 homogalacturonan (HG) epitope was abundant in an HG fraction and analysis of LM19 binding to a rhamnogalacturonan-I (RG-I) rich-fraction indicated that the LM19 epitope is sensitive to acetylation. A specific RG-I epitope (LM16), four arabinogalactan-protein (AGP) epitopes (LM2, LM14, JIM16, MAC207) and an extensin epitope (JIM20) were found to be abundant and co-located in several isolated polysaccharide fractions including an arabinogalactan fraction and two RG-I fractions. Detection of the RG-I, AGP and extensin epitopes identified in isolated polysaccharide fractions in sections of ginseng roots indicated that they were most abundant in secretory cavities found in the cortical regions of ginseng roots. In addition, the immunocytochemical study indicated that polysaccharide epitope masking is a widespread phenomenon in the primary cell walls of ginseng roots.  相似文献   

9.
采用人工控制光温条件的蛭石-营养液相结合的培养方法,对根分泌物活化难溶性硫化镉以及对水稻吸收、运输镉的影响进行了研究。结果表明,缺铁水稻根分泌物和缺铁小麦根分泌匀能活化水稻根际的难溶性镉(CdS),促进了水稻对这部分镉的吸收和运输;但二者的活化强度不同,缺铁小麦根分泌物对镉的活化作用较缺铁水稻根分泌物强。  相似文献   

10.
Plant root mucilage is known to enhance soil quality by contributing towards the soil carbon pool, soil aggregation, detoxification of heavy metal ions and interactions with rhizospheric microflora. Mucilage consists of many monosaccharide units, including fucose which can be used as an indicator for plant root based polysaccharides. This is the first report of an immunological technique developed to use anti-fucose antibodies as markers for probing and localizing fucosyl residues in mucilage polysaccharide and, in turn, for localization of plant root mucilage. Fucose was complexed with bovine serum albumin to raise antibodies against fucose. A fucose-directed antibody was shown to cross-react with root cap mucilages from grasses. This antibody was used to localize root mucilage polysaccharide in maize and wheat root caps using immunogold electron microscopy. Abundant labelling could be localized on the cell wall, and in the intercellular matrix and vesicles of the peripheral root cap cells. Labelling was less intense in cells towards the centre of the root cap tissue. Control experiments confirmed that immunogold localization of fucose was specific and reliable.  相似文献   

11.
Summary The construction and assembly of a model root region is described. The model was used to manipulate the soil matrix, soil microorganisms, and to simulate release of root exudates. The design of the apparatus facilitated long-term, direct microscopic observations of microbial activity in soil and on artificial roots. Preliminary studies indicate that microbial responses to osmotic stress and to changes in components of exudate solutions are easily monitored.  相似文献   

12.
Field observations have shown that rhizosheaths of grasses formed under dry conditions are larger, more coherent, and more strongly bound to the roots than those formed in wet soils. We have quantified these effects in a model system in which corn (Zea mays L.) primary roots were grown through a 30-cm-deep prepared soil profile that consisted of a central, horizontal, "dry" (9% water content) or "wet" (20% water content) layer (4 cm thick) sandwiched between damp soil (15-17% water content). Rhizosheaths formed in dry layers were 5 times the volume of the subtending root. In wet layers, rhizosheaths were only 1.5 times the root volume. Fractions of the rhizosheath soil were removed from individual roots by three successive treatments; sonication, hot water, and abrasion. Sonication removed 50 and 90% of the soil from rhizosheaths formed in dry and wet soils, respectively. After the heat treatment, 35% of the soil still adhered to those root portions where rhizosheaths had developed in dry soil, compared with 2% where sheaths had formed in wet soil. Root hairs were 4.5 times more abundant and were more distorted on portions of roots from dry layers than from wet layers. Drier soil enhanced adhesiveness of rhizosheath mucilages and stimulated the formation of root hairs; both effects stabilize the rhizosheath. Extensive and stable rhizosheaths may function in nutrient acquisition in dry soils.  相似文献   

13.
Chemotaxis of Bradyrhizobium japonicum to soybean exudates.   总被引:5,自引:1,他引:4       下载免费PDF全文
The chemotactic response of Bradyrhizobium japonicum toward soybean seed and root exudates was examined. Assays using various isoflavones and fractionated exudate indicated that isoflavones are not the principal attractants in exudates. Likewise, induction of nod genes with isoflavones or seed exudate before assay did not enhance chemotaxis. Screening of numerous compounds revealed that only dicarboxylic acids and the amino acids glutamate and aspartate were strong attractants. The presence of glutamate, aspartate, and dicarboxylic acids in appreciable concentrations in soybean seed and root exudates indicates that these compounds likely represent natural chemoattractants for B. japonicum.  相似文献   

14.
小麦根系分泌物对黄瓜生长及土壤真菌群落结构的影响   总被引:1,自引:1,他引:0  
以黄瓜为受体,以不同化感效应(促进/抑制)小麦品种为供体,采用PCR-DGGE技术,研究了小麦根系分泌物及伴生小麦对黄瓜生长及土壤真菌群落结构的影响.结果表明: 在处理第6天和第12天,化感促进效应小麦根系分泌物分别显著提高了黄瓜幼苗株高和茎粗;在处理第18天,化感促进和抑制效应小麦根系分泌物均显著提高了黄瓜幼苗株高;在处理第6天,不同化感效应小麦根系分泌物均显著降低了黄瓜幼苗根际土壤真菌群落条带数、Shannon指数及均匀度指数,有苗对照(W)显著高于无苗对照(Wn);在处理第18天,各处理的真菌群落结构条带数、Shannon指数及均匀度指数均显著高于无苗对照(Wn).伴生化感抑制效应小麦显著降低了黄瓜根际土壤真菌群落Shannon指数和均匀度指数,说明小麦根系分泌物及伴生小麦改变了土壤真菌群落结构.DGGE图谱及其主成分分析结果表明,伴生不同化感效应小麦对土壤真菌群落结构影响较大.  相似文献   

15.
Chemotaxis of Bradyrhizobium japonicum to soybean exudates.   总被引:1,自引:0,他引:1  
The chemotactic response of Bradyrhizobium japonicum toward soybean seed and root exudates was examined. Assays using various isoflavones and fractionated exudate indicated that isoflavones are not the principal attractants in exudates. Likewise, induction of nod genes with isoflavones or seed exudate before assay did not enhance chemotaxis. Screening of numerous compounds revealed that only dicarboxylic acids and the amino acids glutamate and aspartate were strong attractants. The presence of glutamate, aspartate, and dicarboxylic acids in appreciable concentrations in soybean seed and root exudates indicates that these compounds likely represent natural chemoattractants for B. japonicum.  相似文献   

16.
采用水培法比较4种禾本科植物水稻(Oryza sativa L.)、玉米(Zea mays L.)、高粱(Sorghum bicolor(L.)Moench)和小麦(Triticum aestivum L.)8个基因型的抗铝(Al)能力,并对他们在Al积累后细胞壁的多糖组分进行分析。结果显示,在5~200 μmol/L Al处理下,水稻抗Al能力较强,而小麦抗Al能力较弱。在50 μmol/L Al处理下,小麦根尖的果胶和半纤维素1含量的增幅明显高于水稻。水稻基因型‘日本晴’与‘浙辐802’的细胞壁Al含量分别占根尖总Al含量的78.7%和91.6%;小麦基因型‘扬麦18’与‘扬麦16’Al含量分别占根尖总Al含量的64.9%和72.1%。Al吸附-解吸实验结果显示,小麦根尖细胞壁上Al的吸附量高于水稻。研究结果表明,细胞壁是Al积累的主要部位,对Al敏感的水稻和小麦基因型细胞壁中的Al主要分布在果胶中;而对Al耐性较强的水稻和小麦基因型细胞壁中的Al主要分布在半纤维素1中。  相似文献   

17.
North  Gretchen B.  Nobel  Park S. 《Plant and Soil》1997,191(2):249-258
Water movement between roots and soil can be limited by incomplete root–soil contact, such as that caused by air gaps due to root shrinkage, and can also be influenced by rhizosheaths, composed of soil particles bound together by root exudates and root hairs. The possible occurrence of air gaps between the roots and the soil and their consequences for the hydraulic conductivity of the root–soil pathway were therefore investigated for the cactus t Opuntia ficus-indica, which has two distinct root regions: a younger, distal region where rhizosheaths occur, and an older, proximal region where roots are bare. Resin-embedded sections of roots in soil were examined microscopically to determine root–soil contact for container-grown plants kept moist for 21 days, kept moist and vibrated to eliminate air gaps, droughted for 21 days, or droughted and vibrated. During drought, roots shrank radially by 30% and root–soil contact in the bare root region of nonvibrated containers was reduced from 81% to 31%. For the sheathed region, the hydraulic conductivity of the rhizosheath was the least limiting factor and the root hydraulic conductivity was the most limiting; for the bare root region, the hydraulic conductivity of the soil was the least limiting factor and the hydraulic conductivity of the root–soil air gap was the most limiting. The rhizosheath, by virtually eliminating root–soil air gaps, facilitated water uptake in moist soil. In the bare root region, the extremely low hydraulic conductivity of the root–soil air gap during drought helped limit water loss from roots to a drier soil.  相似文献   

18.
Root exudates of plants   总被引:21,自引:0,他引:21  
Summary The release of substances from wheat roots was found to be directly related to the growth of the root system. Plants whose root system did not grow released almost no exudates.When exudate concentration in the vicinity of the roots was lowered by frequent replacements of the nutrient solution or by a simultaneous cultivation of exudate-utilizing bacteria, the release of exudates was enhanced. In axenic wheat cultures, the amount of exudates during a 12-day cultivation with 2- or 4-day intervals between medium replacements represented 50% of root dry weight and 12% of whole plant dry weight.Wheat plants cultivated in the presence of the bacteriumPseudomonas putida released up to double the amount of exudates compared with axenic variants.  相似文献   

19.
Many invasive plants have enhanced mutualistic arbuscular mycorrhizal (AM) fungal associations, however, mechanisms underlying differences in AM fungal associations between introduced and native populations of invasive plants have not been explored. Here we test the hypothesis that variation in root exudate chemicals in invasive populations affects AM fungal colonization and then impacts plant performance. We examined flavonoids (quercetin and quercitrin) in root exudates of native and introduced populations of the invasive plant Triadica sebifera and tested their effects on AM fungi and plant performance. We found that plants from introduced populations had higher concentrations of quercetin in root exudates, greater AM fungal colonization and higher biomass. Applying root exudates more strongly increased AM fungal colonization of target plants and AM fungal spore germination when exudate donors were from introduced populations. The role of root exudate chemicals was further confirmed by decreased AM fungal colonization when activated charcoal was added into soil. Moreover, addition of quercetin into soil increased AM fungal colonization, indicating quercetin might be a key chemical signal stimulating AM fungal associations. Together these results suggest genetic differences in root exudate flavonoids play an important role in enhancing AM fungal associations and invasive plants’ performance, thus considering root exudate chemicals is critical to unveiling mechanisms governing shifting plant-soil microbe interactions during plant invasions.Subject terms: Population dynamics, Community ecology, Plant ecology  相似文献   

20.
Wheat varietal autotoxicity and varietal allelopathy were assessed based on plant extract and root exudate bioassays under laboratory conditions. Aqueous extract of wheat differed in varietal autotoxicity and varietal allelopathy, inhibiting wheat germination by 2–21%, radicle growth by 15–30%, and coleoptile growth by 5–20%, depending on the combination of the receiver and donor. Extracts of cv Triller or cv Currawong were more allelopathic to other wheat varieties than cv Batavia and cv Federation. Triller extract was more autotoxic than Federation. Assessment of root exudates by the equal-compartment-agar-method further identified the significant differences in varietal autotoxicity and varietal allelopathy of root exudates between wheat varieties, with root exudates of Triller or Batavia showing stronger autotoxic or allelopathic effects than Currawong or Federation. The varietal autotoxicity and allelopathy of root exudates also showed a characteristic radial inhibitory pattern in the agar growth medium. These results suggest that careful selection of suitable wheat varieties is necessary in a continuous cropping system in order to minimize the negative impacts of varietal allelopathy and varietal autotoxicity. Factors affecting autotoxicity in the field and strategies in autotoxicity management are discussed. Resposible Editor: Philippe Hinsinger  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号