首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective macroautophagy/autophagy plays a pivotal role in the processing of foreign pathogens and cellular components to maintain homeostasis in human cells. To date, numerous studies have demonstrated the uptake of nanoparticles by cells, but their intracellular processing through selective autophagy remains unclear. Here we show that carbon-based nanodiamonds (NDs) coated with ubiquitin (Ub) bind to autophagy receptors (SQSTM1 [sequestosome 1], OPTN [optineurin], and CALCOCO2/NDP52 [calcium binding and coiled-coil domain 2]) and are then linked to MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) for entry into the selective autophagy pathway. NDs are ultimately delivered to lysosomes. Ectopically expressed SQSTM1-green fluorescence protein (GFP) could bind to the Ub-coated NDs. By contrast, the Ub-associated domain mutant of SQSTM1 (ΔUBA)-GFP did not bind to the Ub-coated NDs. Chloroquine, an autophagy inhibitor, prevented the ND-containing autophagosomes from fusing with lysosomes. Furthermore, autophagy receptors OPTN and CALCOCO2/NDP52, involved in the processing of bacteria, were found to be involved in the selective autophagy of NDs. However, ND particles located in the lysosomes of cells did not induce mitotic blockage, senescence, or cell death. Single ND clusters in the lysosomes of cells were observed in the xenografted human lung tumors of nude mice. This study demonstrated for the first time that Ub-coated nanoparticles bind to autophagy receptors for entry into the selective autophagy pathway, facilitating their delivery to lysosomes.  相似文献   

2.
RK Amaravadi  JD Winkler 《Autophagy》2012,8(9):1383-1384
Lys05 is a previously undescribed dimeric chloroquine which more potently accumulates in the lysosome and blocks autophagy compared with HCQ. Lys05 produced more potent antitumor activity as a single agent both in vitro and in vivo in multiple human cancer cell lines and xenograft models compared with HCQ. Initial structure-activity relationship studies demonstrated that the increased activity associated with Lys05 was due to the bivalent aminoquinoline rings, C7-Chlorine, and a short triamine linker. While lower doses of Lys05 were well tolerated and associated with antitumor activity, at the highest dose tested, Lys05 produced Paneth cell dysfunction and intestinal toxicity, similar to what can be observed in mice and humans with genetic defects in the autophagy gene ATG16L1. Lys05 is therefore a new lysosomal autophagy inhibitor that has potential to be developed further into a drug for cancer and other medical applications.  相似文献   

3.
《Autophagy》2013,9(3):397-407
Selective autophagic degradation of cellular components underlies many of the important physiological and pathological implications that autophagy has for mammalian cells. Cytoplasmic vesicles, just like other intracellular items, can be subjected to conventional autophagic events where double-membrane autophagosomes specifically isolate and deliver them for lysosomal destruction. However, intracellular membranes appear to constitute common platforms for unconventional versions of the autophagic pathway, a notion that has become apparent during the past few years. For instance, in many cases of autophagy directed against bacterial phagosomes, subversion of the process results in multimembrane vacuoles that promote bacterial replication instead of the usual degradative outcome. In a different atypical modality, single-membrane vesicles can be labeled with LC3 to direct their contents for lysosomal degradation. In fact, single-membrane compartments of various kinds often provide an assembly site for the autophagic machinery to perform unanticipated nondegradative activities that range from localized secretion of lysosomal contents to melanosome function. Interestingly, many of these unconventional processes seem to be initiated through engagement of relevant nodes of the autophagic signaling network that, once activated, promote LC3 decoration of the targeted membrane, and some cases of inducer/receptor proteins that specifically engage those important signaling hubs have recently been described. Here we review the available examples of all autophagic variants involving membranous compartments, with a main focus on the more recently discovered unconventional phenomena where the usual degradation purpose of autophagy or its canonical mechanistic features are not completely conserved.  相似文献   

4.
《Autophagy》2013,9(9):1263-1265
Two primary forms of autophagy have been identified in the field of cancer therapy based on their apparent functions in the tumor cell; these are the cytoprotective form that could, in theory, be inhibited for the purpose of sensitization to radiation and chemotherapeutic drugs and the “cytotoxic” form that either mediates or contributes to the actions of these treatment modalities. Surprisingly, to date, no clear-cut biochemical or molecular characteristics have been identified that might serve to distinguish between these two forms. In this commentary, we develop the concept of an additional form of autophagy that is nonprotective in that its inhibition neither sensitizes the tumor cell to exogenous stress (again, chemotherapy or radiation) nor protects the cell from the impact of these treatments. This form of autophagy also fails to exhibit any characteristics that might distinguish it from the cytoprotective and/or cytotoxic forms of autophagy. However, the existence of nonprotective autophagy is of potential significance in that it contributes to the challenge of predicting when the strategy of autophagy suppression might prove to have therapeutic benefit in the clinical treatment of cancer.  相似文献   

5.
《Autophagy》2013,9(4):704-706
A major challenge in formulating an effective immunotherapy is to overcome the mechanisms of tumor escape from immunosurveillance. We showed that hypoxia-induced autophagy impairs cytotoxic T-lymphocyte (CTL)-mediated tumor cell lysis by regulating phospho-STAT3 in target cells. Autophagy inhibition in hypoxic cells decreases phospho-STAT3 and restores CTL-mediated tumor cell killing by a mechanism involving the ubiquitin proteasome system and SQSTM1/p62. Simultaneously boosting the CTL-response, using a TRP-peptide vaccination strategy, and targeting autophagy in hypoxic tumors, improves the efficacy of cancer vaccines and promotes tumor regression in vivo. Overall, in addition to its immunosuppressive effect, the hypoxic microenvironment also contributes to immunoresistance and can be detrimental to antitumor effector cell functions.  相似文献   

6.
《Autophagy》2013,9(8):1380-1390
The efficacy of proteasome inhibition for myeloma is limited by therapeutic resistance, which may be mediated by activation of the autophagy pathway as an alternative mechanism of protein degradation. Preclinical studies demonstrate that autophagy inhibition with hydroxychloroquine augments the antimyeloma efficacy of the proteasome inhibitor bortezomib. We conducted a phase I trial combining bortezomib and hydroxychloroquine for relapsed or refractory myeloma. We enrolled 25 patients, including 11 (44%) refractory to prior bortezomib. No protocol-defined dose-limiting toxicities occurred, and we identified a recommended phase 2 dose of hydroxychloroquine 600 mg twice daily with standard doses of bortezomib, at which we observed dose-related gastrointestinal toxicity and cytopenias. Of 22 patients evaluable for response, 3 (14%) had very good partial responses, 3 (14%) had minor responses, and 10 (45%) had a period of stable disease. Electron micrographs of bone marrow plasma cells collected at baseline, after a hydroxychloroquine run-in, and after combined therapy showed therapy-associated increases in autophagic vacuoles, consistent with the combined effects of increased trafficking of misfolded proteins to autophagic vacuoles and inhibition of their degradative capacity. Combined targeting of proteasomal and autophagic protein degradation using bortezomib and hydroxychloroquine is therefore feasible and a potentially useful strategy for improving outcomes in myeloma therapy.  相似文献   

7.
The year of 2013 marked the 50th anniversary of C de Duve''s coining of the term “autophagy” for the degradation process of cytoplasmic constituents in the lysosome/vacuole. This year we regretfully lost this great scientist, who contributed much during the early years of research to the field of autophagy. Soon after the discovery of lysosomes by de Duve, electron microscopy revealed autophagy as a means of delivering intracellular components to the lysosome. For a long time after the discovery of autophagy, studies failed to yield any significant advances at a molecular level in our understanding of this fundamental pathway of degradation. The first breakthrough was made in the early 1990s, as autophagy was discovered in yeast subjected to starvation by microscopic observation. Next, a genetic effort to address the poorly understood problem of autophagy led to the discovery of many autophagy-defective mutants. Subsequent identification of autophagy-related genes in yeast revealed unique sets of molecules involved in membrane dynamics during autophagy. ATG homologs were subsequently found in various organisms, indicating that the fundamental mechanism of autophagy is well conserved among eukaryotes. These findings brought revolutionary changes to research in this field. For instance, the last 10 years have seen remarkable progress in our understanding of autophagy, not only in terms of the molecular mechanisms of autophagy, but also with regard to its broad physiological roles and relevance to health and disease. Now our knowledge of autophagy is dramatically expanding day by day. Here, the historical landmarks underpinning the explosion of autophagy research are described with a particular focus on the contribution of yeast as a model organism.  相似文献   

8.
《Autophagy》2013,9(3)
To tell the truth, I find it difficult to work when flying, or even when sitting in an airport for an extended period of time. So, typically I take along a book to read. And when I truly cannot concentrate, for example when a flight is considerably delayed, I have even been known to resort to word puzzles. Depending on the type, they do not require much attention (that is, you can pick up right where you left off after you glance at the flight status screen for the twentieth or so time, even though you know nothing has changed), or effort (although you need to use a pen or pencil, not a keyboard), but nonetheless they can keep your mind somewhat occupied. I even rationalize doing them based on the assumption that they are sharpening my observational/pattern-finding skills. One type of word puzzle that is particularly mindless, but for that very reason I still enjoy in the above circumstances, is a word search; you are given a grid with letters and/or numbers, and a list of “hidden” terms, and you circle them within the grid, crossing them off the list as you go along. I do admit that the categories of terms used in the typical word searches can become rather mundane (breeds of dog, types of food, words that are followed by “stone,” words associated with a famous movie star, words from a particular television show, etc.). Therefore, on one of my last seminar trips I decided to generate my own word search, using the category of autophagy.  相似文献   

9.
溶酶体具有高度保守的异质性,是细胞自噬的关键细胞器。细胞质中的蛋白质和细胞器最终在溶酶体降解,故溶酶体在维持细胞结构和功能的平衡方面起着重要生理作用。通过自噬溶酶体途径,细胞可清除某些病原体并参与抗原呈递。细胞自噬与异噬经溶酶体密切联系。自噬过程中溶酶体功能障碍与某些疾病和衰老等相关。对细胞自噬的溶酶体途径及其功能意义作了概述。  相似文献   

10.
Administration of glucocorticoids is an effective strategy for treating many inflammatory and autoimmune diseases. However, glucocorticoid treatment can have adverse effects on bone, leading to glucocorticoid-induced osteoporosis (GIO), the most common form of secondary osteoporosis. Although the pathogenesis of GIO has been studied for decades, over the past ten years the autophagy machinery has been implicated as a novel mechanism. Autophagy in osteoblasts, osteocytes, and osteoclasts plays a critical role in the maintenance of bone homeostasis. Herein, we specifically discuss how osteoblast autophagy responds to glucocorticoids and its role in the development of GIO.  相似文献   

11.
《Autophagy》2013,9(12):1922-1936
Just as with yeasts and animal cells, plant cells show several types of autophagy. Microautophagy is the uptake of cellular constituents by the vacuolar membrane. Although microautophagy seems frequent in plants it is not yet fully proven to occur. Macroautophagy occurs farther away from the vacuole. In plants it is performed by autolysosomes, which are considerably different from the autophagosomes found in yeasts and animal cells, as in plants these organelles contain hydrolases from the onset of their formation. Another type of autophagy in plant cells (called mega-autophagy or mega-autolysis) is the massive degradation of the cell at the end of one type of programmed cell death (PCD). Furthermore, evidence has been found for autophagy during degradation of specific proteins, and during the internal degeneration of chloroplasts. This paper gives a brief overview of the present knowledge on the ultrastructure of autophagic processes in plants.  相似文献   

12.
Cardiovascular and cerebrovascular diseases, such as coronary heart disease and stroke, caused by atherosclerosis have become the “number one killer”, seriously endangering human health in developing and developed countries. Atherosclerosis mainly occurs in large and medium-sized arteries and involves intimal thickening, accumulation of foam cells, and formation of atheromatous plaques. Autophagy is a cellular catabolic process that has evolved to defend cells from the turnover of intracellular molecules. Autophagy is thought to play an important role in the development of plaques. This review focuses on studies on autophagy in cells involved in the formation of atherosclerotic plaques, such as monocytes, macrophages, endothelial cells, dendritic cells, and vascular smooth muscle cells, indicating that autophagy plays an important role in plaque development. We mainly discuss the roles of autophagy in these cells in maintaining the stability of atherosclerotic plaques, providing a reference for the next steps to unravel the mechanisms of atherogenesis.  相似文献   

13.
Autophagy is a cellular response activated by many pathogens, but the mechanism of activation is largely unknown. Recently we showed for the first time that rotavirus initiates the autophagy pathway through a calcium-mediated mechanism. Expression of the rotavirus-encoded NSP4, a pore-forming protein (viroporin), elicits the release of endoplasmic reticulum (ER) lumenal calcium into the cytoplasm of the infected cell. The increased cytoplasmic calcium activates a calcium signaling pathway involving calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) and 5′ adenosine monophosphate-activated protein kinase (AMPK) to trigger autophagy. Rotavirus further manipulates autophagy membrane trafficking to transport viral ER-associated proteins to viroplasms, sites of viral genome replication and immature particle assembly. Transport of viral proteins to viroplasms is required for assembly of infectious virus. Thus, NSP4, a multifunctional viral protein known to regulate infectious particle assembly, also modulates membrane trafficking by orchestrating the activation of autophagy to benefit viral replication.  相似文献   

14.
15.
16.
《Autophagy》2013,9(2):339-355
Autophagy is a lysosomal-mediated catabolic process, which through degradation of different cytoplasmic components aids in maintaining cellular homeostasis and survival during exposure to extra- or intracellular stresses. Ammonia is a potential toxic and stress-inducing byproduct of glutamine catabolism, which has recently been found to induce autophagy in an MTOR independent way and support cancer cell survival. In this study, quantitative phosphoproteomics was applied to investigate the initial signaling events linking ammonia to the induction of autophagy. The MTOR inhibitor rapamycin was used as a reference treatment to emphasize the differences between an MTOR-dependent and -independent autophagy-induction. By this means 5901 phosphosites were identified of which 626 were treatment-specific regulated and 175 were coregulated. Investigation of the ammonia-specific regulated sites supported that MTOR activity was not affected, but indicated increased MAPK3 activity, regulation of proteins involved in Rho signal transduction, and a novel phosphorylation motif, serine-proline-threonine (SPT), which could be linked to cytoskeleton-associated proteins. MAPK3 could not be identified as the primary driver of ammonia-induced autophagy but instead the data suggested an upregulation of AMPK and the unfolded protein response (UPR), which might link ammonia to autophagy induction. Support of UPR induction was further obtained from the finding of increased protein levels of the ER stress markers DDIT3/CHOP and HSPA5 during ammonia treatment. The large-scale data set presented here comprises extensive high-quality quantitative information on phosphoprotein regulation in response to 2 very different autophagy inducers and should therefore be considered a general resource for the community.  相似文献   

17.
细胞自噬是真核生物细胞中高度保守的重要代谢途径。该途径是将细胞内有害或不需要的大分子分解并回收,从而使细胞在生长或环境改变导致的应激和压力条件下获得生存优势。近年越来越多的证据表明,非编码RNA,包括微RNA(microRNA,miRNA)和长非编码RNA(long non-coding RNA,lncRNA),在自噬过程中发挥了重要的作用。本文综述了miRNA和lncRNA在多种细胞环境中对细胞自噬的调控机制,并讨论了这些自噬相关的非编码RNA在疾病分子诊断、分类和预后中的作用,及其作为疾病治疗靶标的可能性。  相似文献   

18.
Beyond its role in cellular homeostasis, autophagy plays anti‐ and promicrobial roles in host–microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well‐described in animals, the extent to which xenophagy contributes to plant–bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type‐III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense‐related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense‐related autophagy in plant–bacteria interactions.  相似文献   

19.
Toll-like receptors control autophagy   总被引:1,自引:0,他引:1  
Autophagy is a newly recognized innate defense mechanism, acting as a cell-autonomous system for elimination of intracellular pathogens. The signals and signalling pathways inducing autophagy in response to pathogen invasion are presently not known. Here we show that autophagy is controlled by recognizing conserved pathogen-associated molecular patterns (PAMPs). We screened a PAMP library for effects on autophagy in RAW 264.7 macrophages and found that several prototype Toll-like receptor (TLR) ligands induced autophagy. Single-stranded RNA and TLR7 generated the most potent effects. Induction of autophagy via TLR7 depended on MyD88 expression. Stimulation of autophagy with TLR7 ligands was functional in eliminating intracellular microbes, even when the target pathogen was normally not associated with TLR7 signalling. These findings link two innate immunity defense systems, TLR signalling and autophagy, provide a potential molecular mechanism for induction of autophagy in response to pathogen invasion, and show that the newly recognized ability of TLR ligands to stimulate autophagy can be used to treat intracellular pathogens.  相似文献   

20.
陈元渊  陈红岩  卢大儒 《遗传》2014,36(6):547-551
细胞自噬是细胞在面对内外部环境压力的情况下, 为了自身的稳定而采取的一种降解内部及外来入侵物质的机制。SNARE(Soluble N-ethylmaleimide-sensitive factor attachment protein receptors)假说指出SNARE蛋白在细胞物质运输以及特异性膜融合过程中具有重要作用, 揭示了细胞正常生理活动有序进行的分子机制。由于细胞自噬涉及从自噬体的形成到自噬体溶酶体的融合等诸多膜融合的过程, 因此, 文章对近年来SNARE蛋白在调控细胞自噬过程的研究进展进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号