首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Molecular mapping of the potato virus Y resistance gene Rysto in potato   总被引:3,自引:0,他引:3  
Ry sto is a dominant gene which confers resistance to potato virus Y (PVY) in potato. We have used bulked segregant analysis of an F1 tetraploid potato population to identify three AFLP markers linked to and on either side of Ry sto . The tomato homologue of one of these AFLP markers was assigned to linkage group XI by analysis of an F2 mapping population of tomato, suggesting that Ry sto is also on chromosome XI of the potato genome. This map position was confirmed by the demonstration that Ry sto was linked to markers which had been previously mapped to chromosome XI of the potato genome. Four additional AFLP markers were identified that were closely linked to Ry sto in a population of 360 segregating progeny of a potato cross between a resistant (Ry sto ) and a susceptible parent. Two of these markers were on either side of Ry sto , separated by only a single recombination event. The other two markers co-segregated with Ry sto . Received: 29 July 1996 / Accepted: 30 August 1996  相似文献   

2.
3.
4.
Importin‐α proteins mediate the translocation of nuclear localization signal (NLS)‐containing proteins from the cytoplasm into the nucleus through nuclear pore complexes (NPCs). Genetically, Arabidopsis IMPORTIN‐α3/MOS6 (MODIFIER OF SNC1, 6) is required for basal plant immunity and constitutive disease resistance activated in the autoimmune mutant snc1 (suppressor of npr1‐1, constitutive 1), suggesting that MOS6 plays a role in the nuclear import of proteins involved in plant defense signaling. Here, we sought to identify and characterize defense‐regulatory cargo proteins and interaction partners of MOS6. We conducted both in silico database analyses and affinity purification of functional epitope‐tagged MOS6 from pathogen‐challenged stable transgenic plants coupled with mass spectrometry. We show that among the 13 candidate MOS6 interactors we selected for further functional characterization, the TIR‐NBS‐type protein TN13 is required for resistance against Pseudomonas syringae pv. tomato (Pst) DC3000 lacking the type‐III effector proteins AvrPto and AvrPtoB. When expressed transiently in N. benthamiana leaves, TN13 co‐immunoprecipitates with MOS6, but not with its closest homolog IMPORTIN‐α6, and localizes to the endoplasmic reticulum (ER), consistent with a predicted N‐terminal transmembrane domain in TN13. Our work uncovered the truncated NLR protein TN13 as a component of plant innate immunity that selectively binds to MOS6/IMPORTIN‐α3 in planta. We speculate that the release of TN13 from the ER membrane in response to pathogen stimulus, and its subsequent nuclear translocation, is important for plant defense signal transduction.  相似文献   

5.
Seed potato crops are currently sprayed weekly with mineral oil to prevent transmission of the Potato virus Y (PVY; Potyviridae: Potyvirus), one of the most prevalent and important non‐persistent viruses affecting potato production. In spite of its wide usage as inhibitor of virus transmission, the mode of action for mineral oil is poorly known. The objective of this study was to quantify the effect of dosage and time from application of mineral oil on the inhibition of PVY acquisition. The bird cherry‐oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae), known as vector of PVY, was used in all the experiments. The results indicated that mineral oil efficiently decreased PVY acquisition by 75 and 70% 1 day after application of 5 and 10 l ha?1, respectively. The inhibition effect decreased with time from application; mineral oil inhibits acquisition for less than 4 days at 5 l ha?1 and between 8 and 12 days at 10 l ha?1. As mineral oil was detected in the body of fewer aphids when they fed on plants 1 day after oil application, a change in the aphid probing behaviour on mineral oil‐treated plants was deduced. These results support the hypothesis that mineral oil physically inhibits the binding of the virus at the tip of the stylets.  相似文献   

6.
Low temperature is an environmental factor that affects plant growth and development and plant–pathogen interactions. How temperature regulates plant defense responses is not well understood. In this study, we characterized chilling‐sensitive mutant 1 (chs1), and functionally analyzed the role of the CHS1 gene in plant responses to chilling stress. The chs1 mutant displayed a chilling‐sensitive phenotype, and also displayed defense‐associated phenotypes, including extensive cell death, the accumulation of hydrogen peroxide and salicylic acid, and an increased expression of PR genes: these phenotypes indicated that the mutation in chs1 activates the defense responses under chilling stress. A map‐based cloning analysis revealed that CHS1 encodes a TIR‐NB‐type protein. The chilling sensitivity of chs1 was fully rescued by pad4 and eds1, but not by ndr1. The overexpression of the TIR and NB domains can suppress the chs1–conferred phenotypes. Interestingly, the stability of the CHS1 protein was positively regulated by low temperatures independently of the 26S proteasome pathway. This study revealed the role of a TIR‐NB‐type gene in plant growth and cell death under chilling stress, and suggests that temperature modulates the stability of the TIR‐NB protein in Arabidopsis.  相似文献   

7.
Ry confers extreme resistance (ER) to all strains of potato virus Y (PVY). In previous work, we have shown that the protease domain of the nuclear inclusion a protease (NIaPro) from PVY is the elicitor of the Ry-mediated resistance and that integrity of the protease active site is required for the elicitation of the resistance response. Two possibilities arise from these results: first, the structure of the active protease has elicitor activity; second, NIa-mediated proteolysis is required to elicit the resistance response. To resolve these possibilities, the NIaPro from PVY was randomly mutagenised and the clones obtained were screened for elicitation of cell death as an indicator of resistance and proteolytic activity. We did not find any mutants that had retained the ability to elicit cell death but had lost protease activity, as measured by processing of the NIa cleavage site in the viral genome. This was consistent with the idea that protease activity is necessary for elicitor activity. However, protease activity was not sufficient because we found three elicitor-defective mutants in which there was a high level of protease activity in this assay.  相似文献   

8.
9.
Because of the frequent breakdown of major resistance (R) genes, identification of new partial R genes against rice blast disease is an important goal of rice breeding. In this study, we used a core collection of the Rice Diversity Panel II (C‐RDP‐II), which contains 584 rice accessions and are genotyped with 700 000 single‐nucleotide polymorphism (SNP) markers. The C‐RDP‐II accessions were inoculated with three blast strains collected from different rice‐growing regions in China. Genome‐wide association study identified 27 loci associated with rice blast resistance (LABRs). Among them, 22 LABRs were not associated with any known blast R genes or QTLs. Interestingly, a nucleotide‐binding site leucine‐rich repeat (NLR) gene cluster exists in the LABR12 region on chromosome 4. One of the NLR genes is highly conserved in multiple partially resistant rice cultivars, and its expression is significantly up‐regulated at the early stages of rice blast infection. Knockout of this gene via CRISPR‐Cas9 in transgenic plants partially reduced blast resistance to four blast strains. The identification of this new non‐strain specific partial R gene, tentatively named rice blast Partial Resistance gene 1 (PiPR1), provides genetic material that will be useful for understanding the partial resistance mechanism and for breeding durably resistant cultivars against blast disease of rice.  相似文献   

10.
Plants rely on different immune receptors to recognize pathogens and defend against pathogen attacks. Nucleotide‐binding domain and leucine‐rich repeat (NLR) proteins play a major role as intracellular immune receptors. Their homeostasis must be maintained at optimal levels in order to effectively recognize pathogens without causing autoimmunity. Previous studies have shown that the activity of the ubiquitin‐proteasome system is essential to prevent excessive accumulation of NLR proteins such as Suppressor of NPR1, Constitutive 1 (SNC1). Attenuation of the ubiquitin E3 ligase SCFCPR1 (Constitutive expressor of Pathogenesis Related genes 1) or the E4 protein MUSE3 (Mutant, SNC1‐Enhancing 3) leads to NLR accumulation and autoimmunity. In the current study, we report the identification of AtCDC48A as a negative regulator of NLR‐mediated immunity. Plants carrying Atcdc48A‐4, a partial loss‐of‐function allele of AtCDC48A, exhibit dwarf morphology and enhanced disease resistance to the oomycete pathogen Hyaloperonospora arabidopsidis (H.a.) Noco2. The SNC1 level is increased in Atcdc48A‐4 plants and AtCDC48A interacts with MUSE3 in co‐immunoprecipitation experiments, supporting a role for AtCDC48A in NLR turnover. While Arabidopsis contains four other paralogs of AtCDC48A, knockout mutants of these genes do not show obvious immunity‐related phenotypes, suggesting functional divergence within this family. As an AAA‐ATPase, AtCDC48A likely serves to process the poly‐ubiquitinated NLR substrate for final protein degradation by the 26S proteasome.  相似文献   

11.
12.
Potato cold‐induced sweetening (CIS) is critical for the postharvest quality of potato tubers. Starch degradation is considered to be one of the key pathways in the CIS process. However, the functions of the genes that encode enzymes related to starch degradation in CIS and the activity regulation of these enzymes have received less attention. A potato amylase inhibitor gene known as SbAI was cloned from the wild potato species Solanum berthaultii. This genetic transformation confirmed that in contrast to the SbAI suppression in CIS‐resistant potatoes, overexpressing SbAI in CIS‐sensitive potatoes resulted in less amylase activity and a lower rate of starch degradation accompanied by a lower reducing sugar (RS) content in cold‐stored tubers. This finding suggested that the SbAI gene may play crucial roles in potato CIS by modulating the amylase activity. Further investigations indicated that pairwise protein–protein interactions occurred between SbAI and α‐amylase StAmy23, β‐amylases StBAM1 and StBAM9. SbAI could inhibit the activities of both α‐amylase and β‐amylase in potato tubers primarily by repressing StAmy23 and StBAM1, respectively. These findings provide the first evidence that SbAI is a key regulator of the amylases that confer starch degradation and RS accumulation in cold‐stored potato tubers.  相似文献   

13.
Developing new strategies for crop plants to respond to drought is crucial for their innovative breeding. The down‐regulation of nuclear cap‐binding proteins in Arabidopsis renders plants drought tolerant. The CBP80 gene in the potato cultivar Desiree was silenced using artificial microRNAs. Transgenic plants displayed a higher tolerance to drought, ABA‐hypersensitive stomatal closing, an increase in leaf stomata and trichome density, and compact cuticle structures with a lower number of microchannels. These findings were correlated with a higher tolerance to water stress. The level of miR159 was decreased, and the levels of its target mRNAs MYB33 and MYB101 increased in the transgenic plants subjected to drought. Similar trends were observed in an Arabidopsis cbp80 mutant. The evolutionary conservation of CBP80, a gene that plays a role in the response to drought, suggests that it is a candidate for genetic manipulations that aim to obtain improved water‐deficit tolerance of crop plants.  相似文献   

14.
Ry confers extreme resistance to all strains of potato virus Y (PVY). To identify the elicitor of the Ry-mediated resistance against PVY in potato, we expressed each of the PVY-encoded proteins in leaves of PVY-resistant (Ry) and -susceptible (ry) plants. For most of the proteins tested, there was no evident response. However, when the NIa proteinase was expressed in leaves of Ry plants, there was a hypersensitive response (HR). Proteinase active site mutants failed to induce the Ry-mediated response. The HR was also induced by the NIa proteinase from pepper mottle virus (PepMoV), which has the same cleavage specificity as the PVY enzyme, but not by the tobacco etch virus (TEV) or the potato virus A (PVA) proteinases that cleave different peptide motifs. Based on these results, we propose that Ry-mediated resistance requires the intact active site of the NIa proteinase. Although the structure of the active proteinase could have elicitor activity, it is possible that this proteinase releases an elicitor by cleavage of a host-encoded protein. Alternatively, the proteinase could inactivate a negative regulator of the Ry-mediated resistance response.  相似文献   

15.
The most economically important diseases of grapevine cultivation worldwide are caused by the fungal pathogen powdery mildew (Erysiphe necator syn. Uncinula necator) and the oomycete pathogen downy mildew (Plasmopara viticola). Currently, grapegrowers rely heavily on the use of agrochemicals to minimize the potentially devastating impact of these pathogens on grape yield and quality. The wild North American grapevine species Muscadinia rotundifolia was recognized as early as 1889 to be resistant to both powdery and downy mildew. We have now mapped resistance to these two mildew pathogens in M. rotundifolia to a single locus on chromosome 12 that contains a family of seven TIR‐NB‐LRR genes. We further demonstrate that two highly homologous (86% amino acid identity) members of this gene family confer strong resistance to these unrelated pathogens following genetic transformation into susceptible Vitis vinifera winegrape cultivars. These two genes, designated r esistance to P lasmopara v iticola (MrRPV1) are the first resistance genes to be cloned from a grapevine species. Both MrRUN1 and MrRPV1 were found to confer resistance to multiple powdery and downy mildew isolates from France, North America and Australia; however, a single powdery mildew isolate collected from the south‐eastern region of North America, to which M. rotundifolia is native, was capable of breaking MrRUN1‐mediated resistance. Comparisons of gene organization and coding sequences between M. rotundifolia and the cultivated grapevine V. vinifera at the MrRUN1/MrRPV1 locus revealed a high level of synteny, suggesting that the TIR‐NB‐LRR genes at this locus share a common ancestor.  相似文献   

16.
Leucine‐rich repeat receptor‐like proteins (LRR‐RLPs) are highly adaptable parts of the signalling apparatus for extracellular detection of plant pathogens. Resistance to blackleg disease of Brassica spp. caused by Leptosphaeria maculans is largely governed by host race‐specific R‐genes, including the LRR‐RLP gene LepR3. The blackleg resistance gene Rlm2 was previously mapped to the same genetic interval as LepR3. In this study, the LepR3 locus of the Rlm2 Brassica napus line ‘Glacier DH24287’ was cloned, and B. napus transformants were analysed for recovery of the Rlm2 phenotype. Multiple B. napus, B. rapa and B. juncea lines were assessed for sequence variation at the locus. Rlm2 was found to be an allelic variant of the LepR3 LRR‐RLP locus, conveying race‐specific resistance to L. maculans isolates harbouring AvrLm2. Several defence‐related LRR‐RLPs have previously been shown to associate with the RLK SOBIR1 to facilitate defence signalling. Bimolecular fluorescence complementation (BiFC) and co‐immunoprecipitation of RLM2‐SOBIR1 studies revealed that RLM2 interacts with SOBIR1 of Arabidopsis thaliana when co‐expressed in Nicotiana benthamiana. The interaction of RLM2 with AtSOBIR1 is suggestive of a conserved defence signalling pathway between B. napus and its close relative A. thaliana.  相似文献   

17.
18.
19.
Since their discovery, single‐domain antigen‐binding fragments of camelid‐derived heavy‐chain‐only antibodies, also known as nanobodies (Nbs), have proven to be of outstanding interest as therapeutics against human diseases and pathogens including viruses, but their use against phytopathogens remains limited. Many plant viruses including Grapevine fanleaf virus (GFLV), a nematode‐transmitted icosahedral virus and causal agent of fanleaf degenerative disease, have worldwide distribution and huge burden on crop yields representing billions of US dollars of losses annually, yet solutions to combat these viruses are often limited or inefficient. Here, we identified a Nb specific to GFLV that confers strong resistance to GFLV upon stable expression in the model plant Nicotiana benthamiana and also in grapevine rootstock, the natural host of the virus. We showed that resistance was effective against a broad range of GFLV isolates independently of the inoculation method including upon nematode transmission but not against its close relative, Arabis mosaic virus. We also demonstrated that virus neutralization occurs at an early step of the virus life cycle, prior to cell‐to‐cell movement. Our findings will not only be instrumental to confer resistance to GFLV in grapevine, but more generally they pave the way for the generation of novel antiviral strategies in plants based on Nbs.  相似文献   

20.
Chitin, a major component of fungal cell walls, is a well‐known pathogen‐associated molecular pattern (PAMP) that triggers defense responses in several mammal and plant species. Here, we show that two chitooligosaccharides, chitin and chitosan, act as PAMPs in grapevine (Vitis vinifera) as they elicit immune signalling events, defense gene expression and resistance against fungal diseases. To identify their cognate receptors, the grapevine family of LysM receptor kinases (LysM‐RKs) was annotated and their gene expression profiles were characterized. Phylogenetic analysis clearly distinguished three V. vinifera LysM‐RKs (VvLYKs) located in the same clade as the Arabidopsis CHITIN ELICITOR RECEPTOR KINASE1 (AtCERK1), which mediates chitin‐induced immune responses. The Arabidopsis mutant Atcerk1, impaired in chitin perception, was transformed with these three putative orthologous genes encoding VvLYK1‐1, ‐2, or ‐3 to determine if they would complement the loss of AtCERK1 function. Our results provide evidence that VvLYK1‐1 and VvLYK1‐2, but not VvLYK1‐3, functionally complement the Atcerk1 mutant by restoring chitooligosaccharide‐induced MAPK activation and immune gene expression. Moreover, expression of VvLYK1‐1 in Atcerk1 restored penetration resistance to the non‐adapted grapevine powdery mildew (Erysiphe necator). On the whole, our results indicate that the grapevine VvLYK1‐1 and VvLYK1‐2 participate in chitin‐ and chitosan‐triggered immunity and that VvLYK1‐1 plays an important role in basal resistance against E. necator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号