首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ATP-binding-cassette family membrane proteins play an important role in multidrug resistance. In this study, we investigated BIRB796, an orally active inhibitor of p38 mitogen-activated protein kinase, reversed MDR induced by ABCB1, ABCG2 and ABCC1. Our results showed that BIRB796 could reverse ABCB1-mediated MDR in both the drug selected and transfected ABCB1-overexpressing cell models, but did not enhance the efficacy of substrate-chemotherapeutical agents in ABCC1 or ABCG2 overexpression cells and their parental sensitive cells. Furthermore, BIRB796 increased the intracellular accumulation of the ABCB1 substrates, such as rhodamine 123 and doxorubicin. Moreover, BIRB796 bidirectionally mediated the ATPase activity of ABCB1, stimulating at low concentration, inhibiting at high concentration. However, BIRB796 did not alter the expression of ABCB1 both at protein and mRNA level. The down-regulation of p38 by siRNA neither affected the expression of ABCB1 nor the cytotoxic effect of paclitaxel on KBV200. The binding model of BIRB796 within the large cavity of the transmembrane region of ABCB1 may form the basis for future lead optimization studies. Importantly, BIRB796 also enhanced the effect of paclitaxel on the inhibition of growth of the ABCB1-overexpressing KBV200 cell xenografts in nude mice. Overall, we conclude that BIRB796 reverses ABCB1-mediated MDR by directly inhibiting its transport function. These findings may be useful for cancer combinational therapy with BIRB796 in the clinic.  相似文献   

2.
JNK2 and p38α are closely related mitogen-activated protein kinases that regulate various cellular activities and are considered drug targets for inflammatory diseases. We have determined the X-ray crystal structure of the clinical phase II p38α inhibitor BIRB796 bound to its off-target JNK2. This shows for the first time a JNK subfamily member in the DFG-out conformation. The fully resolved activation loop reveals that BIRB796 inhibits JNK2 activation by stabilizing the loop in a position that does not allow its phosphorylation by upstream kinases. The structure suggests that substituents at the BIRB796 morpholino group and modifications of the t-butyl moiety should further increase the p38α to JNK2 potency ratio. For the design of selective DFG-out binding JNK2 inhibitors, the binding pocket of the BIRB796 tolyl group may have the best potential.  相似文献   

3.
The compound BIRB796 inhibits the stress-activated protein kinases p38alpha and p38beta and is undergoing clinical trials for the treatment of inflammatory diseases. Here we report that BIRB796 also inhibits the activity and the activation of SAPK3/p38gamma. This occurs at higher concentrations of BIRB796 than those that inhibit p38alpha and p38beta and at lower concentrations than those that inhibit the activation of JNK isoforms. We also show that at these concentrations, BIRB796 blocks the stress-induced phosphorylation of the scaffold protein SAP97, further establishing that this is a physiological substrate of SAPK3/p38gamma. Our results demonstrate that BIRB796, in combination with SB203580, a compound that inhibits p38alpha and p38beta, but not the other p38 isoforms, can be used to identify physiological substrates of SAPK3/p38gamma as well as those of p38alpha and p38beta.  相似文献   

4.
Lipoprotein glomerulopathy (LPG) is a renal disease often accompanied by dyslipidemia and increased serum apoE levels. apoESendai (Arg145Pro), a rare mutant based on the apoE3 sequence carrying an apoE2 charge, causes LPG in humans and transgenic mice, but its effects on the artery wall are unknown. Macrophage expression of apoESendai may also directly influence renal and arterial homeostasis. We investigated the effects of macrophage-expressed apoESendai in apoE−/− mice with or without LDL receptor (LDLR). Murine bone marrow transduced to express apoE2, apoE3, or apoESendai was transplanted into lethally irradiated mice. Macrophage apoESendai expression reduced aortic lesion size and inflammation by 32 and 28%, respectively, compared with apoE2 in apoE−/− recipients. No differences in lesion size or inflammation were found between apoESendai and apoE3 in apoE−/− recipients. Macrophage apoESendai expression also reduced aortic lesion size by 18% and inflammation by 29% compared with apoE2 in apoE−/−/LDLR−/− recipients. Glomerular lesions compatible with LPG with increased mesangial matrix, extracellular lipid accumulation, and focal mesangiolysis were only observed in apoE−/−/LDLR−/− mice expressing apoESendai. Thus, macrophage expression of apoESendai protects against atherosclerosis while causing lipoprotein glomerulopathy. This is the first demonstration of an apoprotein variant having opposing effects on vascular and renal homeostasis.  相似文献   

5.
Our recent findings demonstrate that human endometrium-derived mesenchymal stem cells (hMESCs) respond to sublethal oxidative stress by stress-induced premature senescence via the АТМ/Chk2/p53/p21/Rb pathway. Application of SB203580 (SB) inhibitor suggested p38 MAP-kinase involvement in the senescence progression. However, there are several disadvantages concerning this inhibitor: (1) SB is toxic and hardly suitable for in vivo experiments and (2) poor kinase selectivity profile of SB complicates interpretation of the obtained data. Here, to confirm the involvement of p38 in H2O2-induced hMESCs senescence, we applied another highly specific p38 inhibitor, BIRB796 (BIRB). In the presence of BIRB, the cell size decreased, the level of reactive oxygen species reduced, proliferation partially resumed, and Rb phosphorylation level increased in comparison to H2O2-treated hMESCs. Summarizing these results, we can postulate p38 involvement in H2O2-induced senescence of hMESCs and suggest p38 inhibition as a promising approach in prevention of premature senescence.  相似文献   

6.
ZCCHC14 is a CCHC-type zinc finger protein which is expressed in tissues in human and mouse. The function of ZCCHC14 in tumours remains unclear. In this research, we explored the expression, function and related molecular mechanisms of ZCCHC14 in human non–small cell lung cancer (NSCLC). Immunochemistry staining showed that ZCCHC14 was low-expressed or absent in NSCLC tissues. In NSCLC patients, the low expression of ZCCHC14 in tumour tissues was significantly correlated with TNM stage, differentiation degree and adverse clinical outcome (P < .05). The proliferation and invasion ability of cancer cells transfected with ZCCHC14 CRISPR/Ca9 KO plasmids was significantly enhanced (P < .05). Immunoblotting analysis indicated that the expression of p-P38, cyclinD1 and MMP7 were significantly up-regulated after disabling ZCCHC14 (P < .05). We used MAPK-P38 pathway inhibitor doramapimod (BIRB 796) to inhibit P38 signalling pathway activity and determined that the agent significantly disrupted the function of ZCCHC14 and hindered the proliferation and invasion of the tumour. The finding revealed that ZCCHC14 can regulate proliferation and invasion of NSCLC through the P38 pathway. ZCCHC14 plays a crucial regulatory role in the development of NSCLC and may become a zinc finger target for clinical treatment.  相似文献   

7.
The p38 mitogen-activated protein kinase (MAPK) participates in intracellular signaling cascades resulting in inflammatory responses. Therefore, inhibition of the p38 MAPK pathway may form the basis of a new strategy for treatment of inflammatory diseases. However, p38 MAPK activation during systemic inflammation in humans has not yet been shown, and its functional significance in vivo remains unclear. Hence, we exposed 24 healthy male subjects to an i.v. dose of LPS (4 ng/kg), preceded 3 h earlier by orally administered 600 or 50 mg BIRB 796 BS (an in vitro p38 MAPK inhibitor) or placebo. Both doses of BIRB 796 BS significantly inhibited LPS-induced p38 MAPK activation in the leukocyte fraction of the volunteers. Cytokine production (TNF-alpha, IL-6, IL-10, and IL-1R antagonist) was strongly inhibited by both low and high dose p38 MAPK inhibitor. In addition, p38 MAPK inhibition diminished leukocyte responses, including neutrophilia, release of elastase-alpha(1)-antitrypsin complexes, and up-regulation of CD11b with down-regulation of L-selectin. Finally, blocking p38 MAPK decreased C-reactive protein release. These data identify p38 MAPK as a principal mediator of the inflammatory response to LPS in humans. Furthermore, the anti-inflammatory potential of an oral p38 MAPK inhibitor in humans in vivo suggests that p38 MAPK inhibitors may provide a new therapeutic option in the treatment of inflammatory diseases.  相似文献   

8.
An increasing number of structural studies reveal alternative binding sites in protein receptors that become apparent only when an inhibitor binds, and correct prediction of these situations presents a significant challenge to computer-aided drug design efforts. A striking example is provided by recent crystal structures of the p38 MAP kinase, where a 10A movement of the Phe169 side-chain creates a new binding site adjacent to the ATP binding site that is exploited by the diaryl urea inhibitor BIRB796. Here, we show that this binding site can be successfully and repeatedly identified in explicit-solvent molecular dynamics (MD) simulations of the protein that begin from an unliganded p38 crystal structure. Ligand-docking calculations performed on 5000 different structural snapshots generated during MD indicate that the conformations sampled are often surprisingly competent to bind the inhibitor BIRB796 in the crystallographically correct position and with docked energies that are generally more favorable than those of other positions. Similar docking studies with an ATP-binding site-directed inhibitor suggest that it may be possible to develop hybrid inhibitors that target both the ATP and cryptic binding sites simultaneously. Intriguingly, both inhibitors are occasionally found to dock correctly even with p38's "DFG" motif in the "wrong" conformation and BIRB796 can successfully dock, albeit infrequently, without significant displacement of the Phe169 side-chain; this suggests that the inhibitor might facilitate the latter's conformational change. Finally, two quite different conformations of p38's DFG motif are also sampled for extended periods of time during the simulations; these may provide new opportunities for inhibitor development. The MD simulations reported here, which total 390 ns in length, therefore demonstrate that existing computational methods may be of surprising utility in predicting cryptic binding sites in protein receptors prior to their experimental discovery.  相似文献   

9.
The therapeutic benefits of dopamine (DA) agonists after traumatic brain injury (TBI) imply a role for DA systems in mediating functional deficits post‐TBI. We investigated how experimental TBI affects striatal dopamine systems using fast scan cyclic voltammetry (FSCV), western blot, and d‐amphetamine‐induced rotational behavior. Adult male Sprague–Dawley rats were injured by a controlled cortical impact (CCI) delivered unilaterally to the parietal cortex, or were naïve controls. Amphetamine‐induced rotational behavior was assessed 10 days post‐CCI. Fourteen days post‐CCI, animals were anesthetized and underwent FSCV with bilateral striatal carbon fiber microelectrode placement and stimulating electrode placement in the medial forebrain bundle (MFB). Evoked DA overflow was assessed in the striatum as the MFB was electrically stimulated at 60 Hz for 10 s. In 23% of injured animals, but no naïve animals, rotation was observed with amphetamine administration. Compared with naïves, striatal evoked DA overflow was lower for injured animals in the striatum ipsilateral to injury (p < 0.05). Injured animals exhibited a decrease in Vmax (52% of naïve, p < 0.05) for DA clearance in the hemisphere ipsilateral to injury compared with naïves. Dopamine transporter (DAT) expression was proportionally decreased in the striatum ipsilateral to injury compared with naïve animals (60% of naïve, p < 0.05), despite no injury‐related changes in vesicular monoamine transporter or D2 receptor expression (DRD2) in this region. Collectively, these data appear to confirm that the clinical efficacy of dopamine agonists in the treatment of TBI may be related to disruptions in the activity of subcortical dopamine systems.  相似文献   

10.
The K146N/R147W substitutions in apoE3 were described in patients with a dominant form of type III hyperlipoproteinemia. The effects of these mutations on the in vivo functions of apoE were studied by adenovirus-mediated gene transfer in different mouse models. Expression of the apoE3[K146N/R147W] mutant in apoE-deficient (apoE−/−) or apoA-I-deficient (apoA-I−/−)×apoE−/− mice exacerbated the hypercholesterolemia and increased plasma apoE and triglyceride levels. In apoE−/− mice, the apoE3[K146N/R147W] mutant displaced apoA-I from the VLDL/LDL/HDL region and caused the accumulation of discoidal apoE-containing HDL. The WT apoE3 cleared the cholesterol of apoE−/− mice without induction of hypertriglyceridemia and promoted formation of spherical HDL. A unique property of the truncated apoE3[K146N/R147W]202 mutant, compared with similarly truncated apoE forms, is that it did not correct the hypercholesterolemia. The contribution of LPL and LCAT in the induction of the dyslipidemia was studied. Treatment of apoE−/− mice with apoE3[K146N/R147W] and LPL corrected the hypertriglyceridemia, but did not prevent the formation of discoidal HDL. Treatment with LCAT corrected hypertriglyceridemia and generated spherical HDL. The combined data indicate that the K146N/R147W substitutions convert the full-length and the truncated apoE3[K146N/R147W] mutant into a dominant negative ligand that prevents receptor-mediated remnant clearance, exacerbates the dyslipidemia, and inhibits the biogenesis of HDL.  相似文献   

11.
Despite a substantial understanding of the factors regulating oligodendrocyte differentiation, the signaling mechanisms involved in this process are not well-understood. This study elaborates on the findings (Bhat NR, Zhang P (1997) FASEB J 11:A925; Baron W, Metz B, Bansal R, Hoekstra D, de Vries H (2000) Mol Cell Neurosci 15:314–329) of a role for p38 MAP kinase signaling in oligodendrocyte differentiation and myelin gene expression. When proliferating oligodendrocyte progenitors were switched to a growth factor-free differentiation medium, there was a rapid activation of p38 kinase that correlated with an increased phosphorylation of CREB, a down-stream target and a factor involved in oligodendrocyte differentiation. Addition of forskolin, a known inducer of intracellular c-AMP and of oligodendrocyte differentiation, also stimulated CREB phosphorylation in a p38 kinase dependent way. Pharmacological inhibition of p38 interfered with the morphological and antigenic changes associated with differentiating oligodendrocytes as well as with the developmental and forskolin-induced expression of myelin basic protein, thereby supporting an essential role for p38 MAPK pathway in oligodendrocyte differentiation. Special issue dedicated to Anthony Campagnoni.  相似文献   

12.
Discovery of the pyrazole-naphthyl urea class of p38 MAP kinase inhibitors typified by the clinical candidate BIRB 796 has encouraged further exploration of this particular scaffold. Modification to the part of the inhibitor that occupies the adenine/ATP binding site has resulted in a new way to obtain potent inhibitors that possess favorable in vitro and in vivo properties.  相似文献   

13.
Neuronal activity regulates cognition and neural stem cell (NSC) function. The molecular pathways limiting neuronal activity during aging remain largely unknown. In this work, we show that p38MAPK activity increases in neurons with age. By using mice expressing p38α‐lox and CamkII‐Cre alleles (p38α?‐N), we demonstrate that genetic deletion of p38α in neurons suffices to reduce age‐associated elevation of p38MAPK activity, neuronal loss and cognitive decline. Moreover, aged p38α?‐N mice present elevated numbers of NSCs in the hippocampus and the subventricular zone. These results reveal novel roles for neuronal p38MAPK in age‐associated NSC exhaustion and cognitive decline.  相似文献   

14.
Traumatic brain injury (TBI) is the leading cause of death and disability for people under the age of 45 years worldwide. Neuropathology after TBI is the result of both the immediate impact injury and secondary injury mechanisms. Secondary injury is the result of cascade events, including glutamate excitotoxicity, calcium overloading, free radical generation, and neuroinflammation, ultimately leading to brain cell death. In this study, the P2X7 receptor (P2X7R) was detected predominately in microglia of the cerebral cortex and was up-regulated on microglial cells after TBI. The microglia transformed into amoeba-like and discharged many microvesicle (MV)-like particles in the injured and adjacent regions. A P2X7R antagonist (A804598) and an immune inhibitor (FTY720) reduced significantly the number of MV-like particles in the injured/adjacent regions and in cerebrospinal fluid, reduced the number of neurons undergoing apoptotic cell death, and increased the survival of neurons in the cerebral cortex injured and adjacent regions. Blockade of the P2X7R and FTY720 reduced interleukin-1βexpression, P38 phosphorylation, and glial activation in the cerebral cortex and improved neurobehavioral outcomes after TBI. These data indicate that MV-like particles discharged by microglia after TBI may be involved in the development of local inflammation and secondary nerve cell injury.  相似文献   

15.
Cyclin-dependent kinase inhibitors, p21Cip1 and p27Kip1, are upregulated during vascular cell proliferation and negatively regulate growth of vascular cells. We hypothesized that absence of either p21Cip1 or p27Kip1 in apolipoprotein E (apoE)-deficiency may increase atherosclerotic plaque formation. Compared to apoE−/− aortae, both apoE−/−/p21−/− and apoE−/−/p27−/− aortae exhibited significantly more atherosclerotic plaque following a high-cholesterol regimen. This increase was particularly observed in the abdominal aortic regions. Deficiency of p27Kip1 accelerated plaque formation significantly more than p21−/− in apoE−/− mice. This increased plaque formation was in parallel with increased intima/media area ratios. Deficiency of p21Cip1 and p27Kip1 accelerates atherogenesis in apoE−/− mice. These findings have significant implications for our understanding of the molecular basis of atherosclerosis associated with excessive proliferation of vascular cells.  相似文献   

16.
In our previous work, we proposed that desolvation and resolvation of the binding sites of proteins can serve as the slowest steps during ligand association and dissociation, respectively, and tested this hypothesis on two protein‐ligand systems with known binding kinetics behavior. In the present work, we test this hypothesis on another kinetically‐determined protein‐ligand system—that of p38α and eight Type II BIRB 796 inhibitor analogs. The kon values among the inhibitor analogs are narrowly distributed (104kon ≤ 105 M?1 s?1), suggesting a common rate‐determining step, whereas the koff values are widely distributed (10?1koff ≤ 10?6 s?1), suggesting a spectrum of rate‐determining steps. We calculated the solvation properties of the DFG‐out protein conformation using an explicit solvent molecular dynamics simulation and thermodynamic analysis method implemented in WaterMap to predict the enthalpic and entropic costs of water transfer to and from bulk solvent incurred upon association and dissociation of each inhibitor. The results suggest that the rate‐determining step for association consists of the transfer of a common set of enthalpically favorable solvating water molecules from the binding site to bulk solvent. The rate‐determining step for inhibitor dissociation consists of the transfer of water from bulk solvent to specific binding site positions that are unfavorably solvated in the apo protein, and evacuated during ligand association. Different sets of unfavorable solvation are evacuated by each ligand, and the observed dissociation barriers are qualitatively consistent with the calculated solvation free energies of those sets.  相似文献   

17.
Apolipoprotein E (apoE) and certain peptides derived from it have been shown to exert neurotoxic effects in vitro, and apoE has been linked to the etiology of Alzheimer's disease. The mechanisms underlying these toxic and pathological effects are, however, not known. To approach this question, we have studied the effects of apoE peptides on the cytoplasmic calcium ([Ca2+]1) homeostasis of cultured cortical neurons. A tandem dimer repeat peptide (apoEdp) derived from the receptor binding domain of apoE was found to have a potent effect on elevation of [Ca2+]1 calcium. The pathway by which apoEdp exerted this effect was shown to involve both the mobilization of intracellular calcium and the influx of extracellular calcium, although the effect on influx was more pronounced. Calcium mobilization occurs via a G-protein-linked phospholipase C (PLC) pathway, whereas calcium influx appears to involve a novel Co2+-sensitive channel. Both the mobilization and the influx of calcium require the binding of the apoE peptide to a membrane receptor because both pathways are blocked by anti-body to low-density-lipoprotein receptor-related protein. The data suggest that the neurotoxic effects of apoE may be mediated by a persistent elevation of [Ca2+]1. J. Cell. Physiol. 173:73–83, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Neuronal regeneration and axonal re‐growth in the injured mammalian central nervous system remains an unsolved field. To date, three myelin‐associated proteins [Nogo or reticulon 4 (RTN4), myelin‐associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMG)] are known to inhibit axonal regeneration via activation of the neuronal glycosylphosphatidylinositol‐anchored Nogo receptor [NgR, together with p75 neurotrophin receptor (p75NTR) and Lingo‐1]. In the present study we describe the novel protein MANI (myelin‐associated neurite‐outgrowth inhibitor) that localizes to neural membranes. Functional characterization of MANI overexpressing neural stem cells (NSCs) revealed that the protein promotes differentiation into catecholaminergic neurons. Yeast two‐hybrid screening and co‐immunoprecipitation experiments confirmed the cell division cycle protein 27 (Cdc27) as an interacting partner of Mani. The analyses of Mani‐overexpressing PC12 cells demonstrated that Mani retards neuronal axonal growth as a positive effector of Cdc27 expression and activity. We show that knockdown of Cdc27, a component of the anaphase‐promoting complex (APC), leads to enhanced neurite outgrowth. Our finding describes the novel MANI‐Cdc27‐APC pathway as an important cascade that prevents neurons from extending axons, thus providing implications for the potential treatment of neurodegenerative diseases.  相似文献   

19.
ObjectiveSeveral reports describe the role of interleukin (IL)-17 in the development of atherosclerosis; however, its precise role remains controversial. We generated double-deficient mice for apolipoprotein E (apoE) and IL-17 (apoE?/?IL-17?/? mice) and investigated the effect of IL-17 deficiency on vascular inflammation and atherosclerosis.Methods and resultsAtherosclerotic plaque areas in apoE?/?IL-17?/? mice fed a Western diet (WD) were significantly reduced compared with those in apoE?/? mice. No significant differences in plasma lipid profiles were observed between apoE?/? and apoE?/?IL-17?/? mice. The number of infiltrated macrophages in the plaques was significantly decreased in WD-fed apoE?/?IL-17?/? mice compared with WD-fed apoE?/? mice, whereas vascular smooth muscle cell content was not altered by IL-17 deficiency. Expression of inflammatory cytokines (MCP-1, IL-1β, IL-6, IFN-γ, and IL-12 p40) and scavenger receptors (Msr-1, Scarb1, and Olr1) in the plaques was inhibited in WD-fed apoE?/?IL-17?/? mice. Furthermore, expression of inducible nitric oxide (M1 marker) and arginase-1 (M2 marker) was inhibited in WD-fed apoE?/?IL-17?/? mice.ConclusionOur results indicate that IL-17 deficiency reduces vascular inflammation and atherosclerosis and that modulation of IL-17 could be a potential target for prevention and treatment of atherosclerosis.  相似文献   

20.
Apolipoprotein E (apoE) plays a major role in the transport and metabolism of lipid by acting as a ligand for low density lipoprotein-receptors. The amphipathic helical regions of its C-terminal domain are necessary for the lipoprotein binding and assembly of nascent lipoprotein particles. Lipoproteins in the plasma are known to possess a net negative charge, determined by both its protein and lipid components, which regulates the metabolism of lipoproteins. The role of membrane surface charge on the interaction of apoE has not been studied previously. Also the importance of individual amphipathic helical regions of its C-terminal domain in binding to negatively charged lipid membrane is not addressed. In this study we have compared the interaction of four peptide segments of apoE C-terminal domain (apoE(202-223), apoE(223-244), apoE(245-266), and apoE(268-289)) with zwitterionic and negatively charged model membranes by employing UV-visible and fluorescence spectroscopy, circular dichroism, and native PAGE analysis. Our results show that the peptide sequence 202-223, 245-266 and 268-289 of apoE has higher affinity towards negatively charged lipid membrane and are independently capable of forming lipoprotein particles of 17 ± 2 nm Stokes diameter. The results suggest that surface charge of lipoprotein regulates its metabolism possibly by modulating the recruitment of apoE on its surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号