首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
目的动态观察链脲佐菌素(STZ)诱导的糖尿病大鼠血糖控制前后肾小管上皮细胞(TEC)中血管内皮生长因子(VEGF)、转化生长因子β1(TGF-β1)、Smad2/3、Smad4的表达情况,探讨四者在糖尿病大鼠TEC表型转变和肾间质纤维化中可能发挥的作用及相互关系。方法实验动物随机分为5组,依病程长短分为①A组(2周组),②B组(4周组),③C组(8周组),④D组(16周组),⑤E组(24周组),每组分别设有正常对照组(N组)和糖尿病组(a组);另外,16周、24周两组加设胰岛素治疗组(b组)。采用尾静脉注射STZ法复制糖尿病大鼠模型;免疫组织化学方法检测肾小管VEGF、TGF-β1、Smad2/3、Smad4及α-平滑肌肌动蛋白(-αSMA)和纤连蛋白(FN)的表达;Western blot检测肾皮质VEGF和TGF-β1蛋白;PAS染色光镜观察肾小管基底膜变化及细胞外基质沉积情况等形态学改变;生化方法测定血糖、血肌酐及24小时尿蛋白量。结果正常对照组VEGF、TGF-β1及Smad2/3、Smad4在肾小管均有少量表达,-αSMA在肾小管无表达;糖尿病组肾小管前述四者的表达均显著高于正常对照组,且从16周开始肾小管上皮细胞可见α-SMA蛋白阳性表达;糖尿病16周时肾小管VEGF、TGF-β1、Smad2/3、Smad4两两之间呈正相关;随糖尿病进展,α-SMA及FN在肾小管表达增多,24h尿蛋白增多,肾脏肥大指数增大,而VEGF、TGF-β1二者都分别和-αSMA、FN、24h尿蛋白及肾脏肥大指数呈正相关性;胰岛素治疗后,VEGF、TGF-β1、Smad2/3、Smad4及FN的表达都比糖尿病组明显下降,且各指标之间的正相关性依然存在,-αSMA蛋白则呈阴性表达。结论糖尿病肾病大鼠肾小管上皮细胞表达的VEGF、TGF-β1及Smad2/3、Smad4参与了TEC表型转变和肾间质纤维化的发生,并且VEGF和TGF-β1相互作用,共同促进了肾脏损害。胰岛素对DN大鼠TEMT和肾间质纤维化的影响可能部分是通过间接阻断VEGF、TGF-β1和Smad2/3、Smad4在TEC中的合成来实现的。  相似文献   

3.
The relationships between transforming growth factor-β (TGF-β) and cancer are varied and complex. The paradigm that is emerging from the experimental evidence accumulated over the past decade or so is that TGF-β can play two different and opposite roles with respect to the process of malignant progression. During early stages of carcinogenesis, TGF-β acts predominantly as a potent tumor suppressor and may mediate the actions of chemopreventive agents such as retinoids and nonsteroidal anti-estrogens. However, at some point during the development and progression of malignant neoplasms, bioactive TGF-βs make their appearance in the tumor microenvironment and the tumor cells escape from TGF-β-dependent growth arrest. In many cases, this resistance to TGF-β is the consequence of loss or mutational inactivation of the genes that encode signaling intermediates. These include the types I and II TGF-β receptors, as well as receptor-associated and common-mediator Smads. The stage of tumor development or progression at which TGF-β-resistant clones come to dominate the tumor cell population in different types of neoplasm remains to be defined. The phenotypic switch from TGF-β-sensitivity to TGF-β-resistance that occurs during carcinogenesis has several important implications for cancer prevention and treatment.  相似文献   

4.
Smad7对Smad2、Smad3、Smad4核转位的抑制作用   总被引:3,自引:0,他引:3  
研究人永生化支气管上皮BEP2D细胞中,作为Smad蛋白家族的抑制分子,Smad7对TGF-β信号通路中Smad2、Smad3、Smad4核转位的抑制作用.培养BEP2D细胞,瞬时转染Smad7真核表达载体pCISmad7.neo,TGF-β刺激,提取细胞核蛋白及总蛋白,用Western blot方法比较瞬时转染Smad7基因前后细胞核中Smad2、Smad3、Smad4蛋白表达的差异.结果,Smad3在TGF-b作用下有明显的核转位;转染Smad7后Smad3、Smad4的核转位显受到抑制.表明在BEP2D细胞中,Smad7对TGF-β/Smads信号通路的拮抗作用主要通过抑制Smad3的活化、Smad3/Smad4异源复合物的形成及核转位,从而拮抗TGF-β对细胞的生长抑制效应.  相似文献   

5.
6.
Transforming growth factor (TGF)‐β and activin, members of TGF‐β superfamily, are abundantly expressed in the endometrium and regulate decidualization of endometrial stroma. Smad2 and Smad3 are receptor‐regulated Smads (R‐Smads) that transduce extracellular TGF‐β/activin/Nodal signaling. In situ hybridization results showed that Smad3 was highly expressed in the decidual zone during the peri‐implantation period in mice. By using artificial decidualization, we found that Smad3 null mice showed partially compromised decidualization. We therefore hypothesized that Smad2 might compensate for the function of Smad3 during the process of decidualization. Smad2 was also highly expressed in the decidual zone and phosphorylated Smad2 was much more abundantly increased in the deciduoma of Smad3 null mice than for wild‐type (WT) mice. We further employed an in vitro uterine stromal cell decidualization model, and found that decidual prolactin‐related protein (dPRP) and cyclin D3, which are well‐known markers for decidual cells, were significantly down‐regulated in Smad3 null decidual cells, and were much more significantly reduced when the expression of Smad2 was simultaneously silenced by its siRNA (P < 0.05). However, the expression levels of dPRP and cyclin D3 remained the same when Smad2 was silenced in WT decidual cells. Collectively, these findings provide evidence for an important role of Smad3 in decidualization and suggest that Smad2 and Smad3 may have redundant roles in decidualization. J. Cell. Biochem. 113: 3266–3275, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
8.
9.
10.
11.
12.
During the course of breast cancer progression, normally dormant tumour‐promoting effects of transforming growth factor β (TGFβ), including migration, invasion, and metastasis are unmasked. In an effort to identify mechanisms that regulate the pro‐migratory TGFβ ‘switch’ in mammary epithelial cells in vitro, we found that TGFβ stimulates the phosphorylation of Smad1 and Smad5, which are typically associated with bone morphogenetic protein signalling. Mechanistically, this phosphorylation event requires the kinase activity and, unexpectedly, the L45 loop motif of the type I TGFβ receptor, ALK5, as evidenced by studies using short hairpin RNA‐resistant ALK5 mutants in ALK5‐depleted cells and in vitro kinase assays. Functionally, Smad1/5 co‐depletion studies demonstrate that this phosphorylation event is essential to the initiation and promotion of TGFβ‐stimulated migration. Moreover, this phosphorylation event is preferentially detected in permissive environments such as those created by tumorigenic cells or oncogene activation. Taken together, our data provide evidence that TGFβ‐stimulated Smad1/5 phosphorylation, which occurs through a non‐canonical mechanism that challenges the notion of selective Smad phosphorylation by ALK5, mediates the pro‐migratory TGFβ switch in mammary epithelial cells.  相似文献   

13.
14.
Fibrosis in animal models and human diseases is associated with aberrant activation of the Wnt/β‐catenin pathway. Despite extensive research efforts, effective therapies are still not available. Myofibroblasts are major effectors, responsible for extracellular matrix deposition. Inhibiting the proliferation of the myofibroblast is crucial for treatment of fibrosis. Proliferation of myofibroblasts can have many triggering effects that result in fibrosis. In recent years, the Wnt pathway has been studied as an underlying factor as a primary contributor to fibrotic diseases. These efforts notwithstanding, the specific mechanisms by which Wnt‐mediated promotes fibrosis reaction remain obscure. The central role of the transforming growth factor‐β (TGF‐β) and myofibroblast activity in the pathogenesis of fibrosis has become generally accepted. The details of interaction between these two processes are not obvious. The present investigation was conducted to evaluate the level of sustained expression of fibrosis iconic proteins (vimentin, α‐SMA and collagen I) and the TGF‐β signalling pathway that include smad2/3 and its phosphorylated form p‐smad2/3. Detailed analysis of the possible molecular mechanisms mediated by β‐catenin revealed epithelial–mesenchymal transition and additionally demonstrated transitions of fibroblasts to myofibroblast cell forms, along with increased activity of β‐catenin in regulation of the signalling network, which acts to counteract autocrine TGF‐β/smad2/3 signalling. A major outcome of this study is improved insight into the mechanisms by which epithelial and mesenchymal cells activated by TGFβ1‐smad2/3 signalling through Wnt/β‐catenin contribute to lung fibrosis.  相似文献   

15.
This study investigated the roles of ERK1 and ERK2 in transforming growth factor‐β1 (TGF‐β1)‐induced tissue inhibitor of metalloproteinases‐3 (TIMP‐3) expression in rat chondrocytes, and the specific roles of ERK1 and ERK2 in crosstalk with Smad2/3 were investigated to demonstrate the molecular mechanism of ERK1/2 regulation of TGF‐β1 signalling. To examine the interaction of specific isoforms of ERK and the Smad2/3 signalling pathway, chondrocytes were infected with LV expressing either ERK1 or ERK2 siRNA and stimulated with or without TGF‐β1. At indicated time‐points, TIMP‐3 expression was determined by real‐time PCR and Western blotting; p‐Smad3, nuclear p‐Smad3, Smad2/3, p‐ERK1/2 and ERK1/2 levels were assessed. And then, aggrecan, type II collagen and the intensity of matrix were examined. TGF‐β1‐induced TIMP‐3 expression was significantly inhibited by ERK1 knock‐down, and the decrease in TIMP‐3 expression was accompanied by a reduction of p‐Smad3 in ERK1 knock‐down cells. Knock‐down of ERK2 had no effect on neither TGF‐β1‐induced TIMP‐3 expression nor the quantity of p‐Smad3. Moreover, aggrecan, type II collagen expression and the intensity of matrix were significantly suppressed by ERK1 knock‐down instead of ERK2 knock‐down. Taken together, ERK1 and ERK2 have different roles in TGF‐β1‐induced TIMP‐3 expression in rat chondrocytes. ERK1 instead of ERK2 can regulate TGF‐β/Smad signalling, which may be the mechanism through which ERK1 regulates TGF‐β1‐induced TIMP‐3 expression.  相似文献   

16.
17.
18.
Cho IJ  Kim SH  Kim SG 《Cytokine》2006,35(5-6):284-294
Transforming growth factor-beta1 (TGFbeta1) induces plasminogen activator inhibitor-1 (PAI-1) as a major target protein. PAI-1 is associated with fibrosis, thrombosis, and metabolic disorders. TGFbeta1 induces PAI-1 via phosphorylation and nuclear translocation of Smads. Oltipraz inhibits TGFbeta1 expression and also regenerates cirrhotic liver. Nevertheless, whether oltipraz modulates TGFbeta1-mediated cell signaling is unclear. First, this study examined the effect of oltipraz on PAI-1 expression in cirrhotic rat liver. The cells immunochemically stained with anti-PAI-1 antibody accumulated around and within fibrous nodules in cirrhotic liver, which was notably decreased by oltipraz treatment. Next, whether oltipraz inhibits TGFbeta1-mediated Smads activation or Smad-mediated PAI-1 induction was determined in L929 fibroblasts. Oltipraz inhibited the ability of TGFbeta1 to induce PAI-1, as indicated by repression of TGFbeta1-mediated luciferase induction from the plasmid comprising the human PAI-1 promoter and of TGFbeta1-induced Smad-DNA-binding activity. TGFbeta1 induced nuclear transport of receptor-regulated Smad 2 and Smad 3, of which oltipraz selectively inhibited the transport and phosphorylation of Smad 3, thereby reducing formation of Smad 3/4 complex in the nucleus. In summary, oltipraz inhibits PAI-1 induction via a decrease in the formation of Smad 3/4 complex due to selective interruption of Smad 3 activation, indicating that oltipraz regulates the cellular responses downstream of ligand-activated TGFbeta1 receptor.  相似文献   

19.
目的:研究转化生长因子β1(TGF-β1)及其下游Smad3信号蛋白在大鼠心肌细胞肥大中的作用。方法:TGF-β1干预培养新生大鼠心肌细胞,流式细胞仪检测心肌细胞总蛋白含量。结扎大鼠腹主动脉复制心肌肥厚模型,在不同时间点处死动物,检测左室质量指数(LVM1),RT—PCR检测TGF-β1及Smad3的mRNA表达,Westernblot检测Smad3蛋白的表达。结果:不同剂量TGF-β1均能明显增加体外培养的心肌细胞总蛋白含量,TGF-β1(3ng/ml)还增加心肌细胞Smad3 mRNA和蛋白的表达,其表达量1h达高峰,持续至TGF-β1刺激后8h。大鼠腹主动脉结扎术后3d LVMI开始上升并持续至术后28d,心肌组织中TGF-β1、Smad3的mRNA表达水平以及Smad3蛋白表达术后3d也开始上升持续至术后28d,术后14d为表达高峰(P〈0.01)。结论:TGF-β1能诱导大鼠心肌细胞肥大,其信号蛋白Smad3参与了大鼠心肌肥大的病理过程。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号