首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome‐wide association studies (GWASs) combining high‐throughput genome resequencing and phenotyping can accelerate the dissection of genetic architecture and identification of genes for plant complex traits. In this study, we developed a rapeseed genomic variation map consisting of 4 542 011 SNPs and 628 666 INDELs. GWAS was performed for three seed‐quality traits, including erucic acid content (EAC), glucosinolate content (GSC) and seed oil content (SOC) using 3.82 million polymorphisms in an association panel. Six, 49 and 17 loci were detected to be associated with EAC, GSC and SOC in multiple environments, respectively. The mean total contribution of these loci in each environment was 94.1% for EAC and 87.9% for GSC, notably higher than that for SOC (40.1%). A high correlation was observed between phenotypic variance and number of favourable alleles for associated loci, which will contribute to breeding improvement by pyramiding these loci. Furthermore, candidate genes were detected underlying associated loci, based on functional polymorphisms in gene regions where sequence variation was found to correlate with phenotypic variation. Our approach was validated by detection of well‐characterized FAE1 genes at each of two major loci for EAC on chromosomes A8 and C3, along with MYB28 genes at each of three major loci for GSC on chromosomes A9, C2 and C9. Four novel candidate genes were detected by correlation between GSC and SOC and observed sequence variation, respectively. This study provides insights into the genetic architecture of three seed‐quality traits, which would be useful for genetic improvement of B. napus.  相似文献   

2.
Glucosinolates (GSLs), whose degradation products have been shown to be increasingly important for human health and plant defence, compose important secondary metabolites found in the order Brassicales. It is highly desired to enhance pest and disease resistance by increasing the leaf GSL content while keeping the content low in seeds of Brassica napus, one of the most important oil crops worldwide. Little is known about the regulation of GSL accumulation in the leaves. We quantified the levels of 9 different GSLs and 15 related traits in the leaves of 366 accessions and found that the seed and leaf GSL content were highly correlated (r = 0.79). A total of 78 loci were associated with GSL traits, and five common and eleven tissue‐specific associated loci were related to total leaf and seed GSL content. Thirty‐six candidate genes were inferred to be involved in GSL biosynthesis. The candidate gene BnaA03g40190D (BnaA3.MYB28) was validated by DNA polymorphisms and gene expression analysis. This gene was responsible for high leaf/low seed GSL content and could explain 30.62% of the total leaf GSL variation in the low seed GSL panel and was not fixed during double‐low rapeseed breeding. Our results provide new insights into the genetic basis of GSL variation in leaves and seeds and may facilitate the metabolic engineering of GSLs and the breeding of high leaf/low seed GSL content in B. napus.  相似文献   

3.
Kernel size‐related traits are the most direct traits correlating with grain yield. The genetic basis of three kernel traits of maize, kernel length (KL), kernel width (KW) and kernel thickness (KT), was investigated in an association panel and a biparental population. A total of 21 single nucleotide polymorphisms (SNPs) were detected to be most significantly (P < 2.25 × 10?6) associated with these three traits in the association panel under four environments. Furthermore, 50 quantitative trait loci (QTL) controlling these traits were detected in seven environments in the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, of which eight were repetitively identified in at least three environments. Combining the two mapping populations revealed that 56 SNPs (P < 1 × 10?3) fell within 18 of the QTL confidence intervals. According to the top significant SNPs, stable‐effect SNPs and the co‐localized SNPs by association analysis and linkage mapping, a total of 73 candidate genes were identified, regulating seed development. Additionally, seven miRNAs were found to situate within the linkage disequilibrium (LD) regions of the co‐localized SNPs, of which zma‐miR164e was demonstrated to cleave the mRNAs of Arabidopsis CUC1, CUC2 and NAC6 in vitro. Overexpression of zma‐miR164e resulted in the down‐regulation of these genes above and the failure of seed formation in Arabidopsis pods, with the increased branch number. These findings provide insights into the mechanism of seed development and the improvement of molecular marker‐assisted selection (MAS) for high‐yield breeding in maize.  相似文献   

4.
5.
6.
Seasonal declines of fitness‐related traits are often attributed to environmental effects or individual‐level decisions about reproductive timing and effort, but genetic variation may also play a role. In populations of Pacific salmon (Oncorhynchus spp.), seasonal declines in reproductive life span have been attributed to adaptation‐by‐time, in which divergent selection for different traits occurs among reproductively isolated temporal components of a population. We evaluated this hypothesis in kokanee (freshwater obligate Oncorhynchus nerka) by testing for temporal genetic structure in neutral and circadian‐linked loci. We detected no genetic differences in presumably neutral loci among kokanee with different arrival and maturation dates within a spawning season. Similarly, we detected no temporal genetic structure in OtsClock1b, Omy1009uw, or OmyFbxw11, candidate loci associated with circadian function. The genetic evidence from this study and others indicates a lack of support for adaptation‐by‐time as an important evolutionary mechanism underlying seasonal declines in reproductive life span and a need for greater consideration of other mechanisms such as time‐dependent, adaptive adjustment of reproductive effort.  相似文献   

7.
8.
Complete and highly accurate reference genomes and gene annotations are indispensable for basic biological research and trait improvement of woody tree species. In this study, we integrated single‐molecule sequencing and high‐throughput chromosome conformation capture techniques to produce a high‐quality and long‐range contiguity chromosome‐scale genome assembly of the soft‐seeded pomegranate cultivar ‘Tunisia’. The genome covers 320.31 Mb (scaffold N50 = 39.96 Mb; contig N50 = 4.49 Mb) and includes 33 594 protein‐coding genes. We also resequenced 26 pomegranate varieties that varied regarding seed hardness. Comparative genomic analyses revealed many genetic differences between soft‐ and hard‐seeded pomegranate varieties. A set of selective loci containing SUC8‐like, SUC6, FoxO and MAPK were identified by the selective sweep analysis between hard‐ and soft‐seeded populations. An exceptionally large selective region (26.2 Mb) was identified on chromosome 1. Our assembled pomegranate genome is more complete than other currently available genome assemblies. Our results indicate that genomic variations and selective genes may have contributed to the genetic divergence between soft‐ and hard‐seeded pomegranate varieties.  相似文献   

9.
L. Zhou  W. Zhao  Y. Fu  X. Fang  S. Ren  J. Ren 《Animal genetics》2019,50(6):753-756
Body conformation at birth and teat number are economically important traits in the pig industry, as these traits are usually explored to evaluate the growth and reproductive potential of piglets. To detect genetic loci and candidate genes for these traits, we performed a GWAS on 269 pigs from a recently developed Chinese breed (Sushan) using 38  128 informative SNPs on the Affymetrix Porcine SNP 55K Array. In total, we detected one genome‐wide significant (P = 1.31e‐6) SNP for teat number on chromosome X and 15 chromosome‐wide significant SNPs for teat number, body weight, body length, chest circumference and cannon circumference at birth on chromosomes 1, 3, 4, 6, 7, 9, 10, 13, 14, 15, 17 and 18. The most significant SNP had an additive effect of 0.74 × total teat number, explaining 20% of phenotypic variance. Five significant SNPs resided in the previously reported quantitative trait loci for these traits and seven significant SNPs had a pleiotropic effect on multiple traits. Intriguingly, 12 of the genes nearest to the significant SNPs are functionally related to body conformation and teat number traits, including SPRED2, MKX, TMSB4X and ESR1. GO analysis revealed that candidate genes proximal to the significant SNPs were enriched in the G‐protein coupled receptor and steroid hormone‐mediated signaling pathway. Our findings shed light on the genetic basis of the measured traits and provide molecular markers especially for the genetic improvement of teat number in Sushan and related pigs.  相似文献   

10.
11.
12.
The large numbers of samples processed in breeding and biodiversity programmes require the development of efficient methods for the nondestructive evaluation of basic seed properties. Near‐infrared spectroscopy is the state‐of‐the‐art solution for this analytical demand, but it also has some limitations. Here, we present a novel, rapid, accurate procedure based on time domain‐nuclear magnetic resonance (TD‐NMR), designed to simultaneously quantify a number of basic seed traits without any seed destruction. Using a low‐field, benchtop 1H‐NMR instrument, the procedure gives a high‐accuracy measurement of oil content (R2 = 0.98), carbohydrate content (R2 = 0.99), water content (R2 = 0.98) and both fresh and dry weight of seeds/grains (R2 = 0.99). The method requires a minimum of ~20 mg biomass per sample and thus enables to screen individual, intact seeds. When combined with an automated sample delivery system, a throughput of ~1400 samples per day is achievable. The procedure has been trialled as a proof of concept on cereal grains (collection of ~3000 accessions of Avena spp. curated at the IPK genebank). A mathematical multitrait selection approach has been designed to simplify the selection of outlying (most contrasting) accessions. To provide deeper insights into storage oil topology, some oat accessions were further analysed by three‐dimensional seed modelling and lipid imaging. We conclude that the novel TD‐NMR‐based screening tool opens perspectives for breeding and plant biology in general.  相似文献   

13.
Soybean cultivation holds great potential for a sustainable agriculture in Europe, but adaptation remains a central issue. In this large mega‐environment (MEV) study, 75 European cultivars from five early maturity groups (MGs 000–II) were evaluated for maturity‐related traits at 22 locations in 10 countries across Europe. Clustering of the locations based on phenotypic similarity revealed six MEVs in latitudinal direction and suggested several more. Analysis of maturity identified several groups of cultivars with phenotypic similarity that are optimally adapted to the different growing regions in Europe. We identified several haplotypes for the allelic variants at the E1, E2, E3 and E4 genes, with each E haplotype comprising cultivars from different MGs. Cultivars with the same E haplotype can exhibit different flowering and maturity characteristics, suggesting that the genetic control of these traits is more complex and that adaptation involves additional genetic pathways, for example temperature requirement. Taken together, our study allowed the first unified assessment of soybean‐growing regions in Europe and illustrates the strong effect of photoperiod on soybean adaptation and MEV classification, as well as the effects of the E maturity loci for soybean adaptation in Europe.  相似文献   

14.
Gossypium hirsutum L. represents the largest source of textile fibre, and China is one of the largest cotton‐producing and cotton‐consuming countries in the world. To investigate the genetic architecture of the agronomic traits of upland cotton in China, a diverse and nationwide population containing 503 G. hirsutum accessions was collected for a genome‐wide association study (GWAS) on 16 agronomic traits. The accessions were planted in four places from 2012 to 2013 for phenotyping. The CottonSNP63K array and a published high‐density map based on this array were used for genotyping. The 503 G. hirsutum accessions were divided into three subpopulations based on 11 975 quantified polymorphic single‐nucleotide polymorphisms (SNPs). By comparing the genetic structure and phenotypic variation among three genetic subpopulations, seven geographic distributions and four breeding periods, we found that geographic distribution and breeding period were not the determinants of genetic structure. In addition, no obvious phenotypic differentiations were found among the three subpopulations, even though they had different genetic backgrounds. A total of 324 SNPs and 160 candidate quantitative trait loci (QTL) regions were identified as significantly associated with the 16 agronomic traits. A network was established for multieffects in QTLs and interassociations among traits. Thirty‐eight associated regions had pleiotropic effects controlling more than one trait. One candidate gene, Gh_D08G2376, was speculated to control the lint percentage (LP). This GWAS is the first report using high‐resolution SNPs in upland cotton in China to comprehensively investigate agronomic traits, and it provides a fundamental resource for cotton genetic research and breeding.  相似文献   

15.
Binary communication systems that involve sex‐specific signaling and sex‐specific signal perception play a key role in sexual selection and in the evolution of sexually dimorphic traits. The driving forces and genetic changes underlying such traits can be investigated in systems where sex‐specific signaling and perception have emerged recently and show evidence of potential coevolution. A promising model is found in Drosophila prolongata, which exhibits a species‐specific increase in the number of male chemosensory bristles. We show that this transition coincides with recent evolutionary changes in cuticular hydrocarbon (CHC) profiles. Long‐chain CHCs that are sexually monomorphic in the closest relatives of D. prolongata (D. rhopaloa, D. carrolli, D. kurseongensis, and D. fuyamai) are strongly male‐biased in this species. We also identify an intraspecific female‐limited polymorphism, where some females have male‐like CHC profiles. Both the origin of sexually dimorphic CHC profiles and the female‐limited polymorphism in D. prolongata involve changes in the relative amounts of three mono‐alkene homologs, 9‐tricosene, 9‐pentacosene, and 9‐heptacosene, all of which share a common biosynthetic origin and point to a potentially simple genetic change underlying these traits. Our results suggest that pheromone synthesis may have coevolved with chemosensory perception and open the way for reconstructing the origin of sexual dimorphism in this communication system.  相似文献   

16.
Limber pine ( Pinus flexilis ) is a keystone species of high‐elevation forest ecosystems of western North America, but some parts of the geographic range have high infection and mortality from the non‐native white pine blister rust caused by Cronartium ribicola . Genetic maps can provide essential knowledge for understanding genetic disease resistance as well as local adaptation to changing climates. Exome‐seq was performed to construct high‐density genetic maps in two seed families. Composite maps positioned 9612 unigenes across 12 linkage groups ( LG s). Syntenic analysis of genome structure revealed that the majority of orthologs were positional orthologous genes ( POG s) with localization on homologous LG s among conifer species. Gene ontology ( GO) enrichment analysis showed relatively fewer constraints for POG s with putative roles in adaptation to environments and relatively more conservation for POG s with roles in basic cell function and maintenance. The mapped genes included 639 nucleotide‐binding site leucine‐rich repeat genes ( NBS LRR s) , 290 receptor‐like protein kinase genes ( RLK s), and 1014 genes with potential roles in the defense response and induced systemic resistance to attack by pathogens. Orthologous loci for resistance to rust pathogens were identified and were co‐positioned with multiple members of the R gene family, revealing the evolutionary pressure acting upon them. This high‐density genetic map provides a genomic resource and practical tool for breeding and genetic conservation programs, with applications in genome‐wide association studies ( GWASs ), the characterization of functional genes underlying complex traits, and the sequencing and assembly of the full‐length genomes of limber pine and related Pinus species.  相似文献   

17.
18.
19.
20.
Intraspecific trait variation (ITV), based on available genetic diversity, is one of the major means plant populations can respond to environmental variability. The study of functional trait variation and diversity has become popular in ecological research, for example, as a proxy for plant performance influencing fitness. Up to now, it is unclear which aspects of intraspecific functional trait variation (iFDCV) can be attributed to the environment or genetics under natural conditions. Here, we examined 260 individuals from 13 locations of the rare (semi‐)dry calcareous grassland species Trifolium montanum L. in terms of iFDCV, within‐habitat heterogeneity, and genetic diversity. The iFDCV was assessed by measuring functional traits (releasing height, biomass, leaf area, specific leaf area, leaf dry matter content, Fv/Fm, performance index, stomatal pore surface, and stomatal pore area index). Abiotic within‐habitat heterogeneity was derived from altitude, slope exposure, slope, leaf area index, soil depth, and further soil factors. Based on microsatellites, we calculated expected heterozygosity (He) because it best‐explained, among other indices, iFDCV. We performed multiple linear regression models quantifying relationships among iFDCV, abiotic within‐habitat heterogeneity and genetic diversity, and also between separate functional traits and abiotic within‐habitat heterogeneity or genetic diversity. We found that abiotic within‐habitat heterogeneity influenced iFDCV twice as strong compared to genetic diversity. Both aspects together explained 77% of variation in iFDCV ( = .77, F2, 10 = 21.66, p < .001). The majority of functional traits (releasing height, biomass, specific leaf area, leaf dry matter content, Fv/Fm, and performance index) were related to abiotic habitat conditions indicating responses to environmental heterogeneity. In contrast, only morphology‐related functional traits (releasing height, biomass, and leaf area) were related to genetics. Our results suggest that both within‐habitat heterogeneity and genetic diversity affect iFDCV and are thus crucial to consider when aiming to understand or predict changes of plant species performance under changing environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号