首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • Phototropic leaf movement of plants is an effective mechanism for adapting to light conditions. Light is the major driver of plant photosynthesis. Leaf N is also an important limiting factor on leaf photosynthetic potential. Cotton (Gossypium hirsutum L.) exhibits diaheliotropic leaf movement. Here, we compared the long‐term photosynthetic acclimation of fixed leaves (restrained) and free leaves (allowed free movement) in cotton.
  • The fixed leaves and free leaves were used for determination of PAR, leaf chlorophyll concentration, leaf N content and leaf gas exchange. The measurements were conducted under clear sky conditions at 0, 7, 15 and 30 days after treatment (DAT).
  • The results showed that leaf N allocation and partitioning among different components of the photosynthetic apparatus were significantly affected by diaheliotropic leaf movement. Diaheliotropic leaf movement significantly increased light interception per unit leaf area, which in turn affected leaf mass per area (LMA), leaf N content (NA) and leaf N allocation to photosynthesis (NP). In addition, cotton leaves optimised leaf N allocation to the photosynthetic apparatus by adjusting leaf mass per area and NA in response to optimal light interception.
  • In the presence of diaheliotropic leaf movement, cotton leaves optimised their structural tissue and photosynthetic characteristics, such as LMA, NA and leaf N allocation to photosynthesis, so that leaf photosynthetic capacity was maximised to improve the photosynthetic use efficiency of light and N under high light conditions.
  相似文献   

2.
The importance of light acquisition and utilization by individuals in intraspecific competition was evaluated by determining growth and photosynthesis of individual plants in a dense monospecific stand of an annual, Xanthium canadense. Photosynthesis of individual plants in the stand was calculated using a canopy photosynthesis model in which leaf photosynthesis was assumed to be function of leaf nitrogen content and light availability. The estimated photosynthetic rates of individuals were strongly correlated with the measured growth rates. Photosynthetic rates per unit aboveground mass (RPR, relative photosynthetic rate) increased with increasing aboveground mass, suggesting asymmetric (one-sided) competition in the stand. However, larger individuals had similar RPRs, suggesting symmetric (two-sided) competition. These results were consistent with the observation that size inequality over the whole stand increased with growth, but it remained stable among the larger individuals. The RPR of an individual was calculated as the product of absorbed photon flux per unit aboveground mass (Φmass) and light use efficiency (LUE, photosynthesis per unit absorbed photon flux). Φmass indicates the efficiency of light acquisition, and was higher in larger individuals in the stand, while LUE was highest in individuals with intermediate aboveground mass. LUE depends on leaf nitrogen content. At an early stage, leaf nitrogen contents of smaller individuals were similar to those that maximize LUE. Light availability to smaller individuals decreased as they grew, while their nitrogen contents did not change markedly, which decreased their LUE. We concluded that asymmetric competition among individuals in the stand resulted mainly from lower efficiencies in both light acquisition and light use by smaller individuals. Received: 31 January 1998 / Accepted: 12 November 1998  相似文献   

3.
Wang J L  Yu G R  Fang Q X  Jiang D F  Qi H  Wang Q F 《农业工程》2008,28(2):525-533
Photosynthesis coupled with transpiration determines water use efficiency (WUE) at leaf level, and the responses of WUE controlled by gas exchanges through stomata to environment are the basis of carbon and water cycles in the ecosystem. In this paper, by using Li-6400 Portable Photosynthesis System (LI-COR), WUE at leaf level was analyzed under controlled photosynthetic photons flux density (PPFD) and CO2 concentration conditions across 9 plant species including maize (Zea mays), sorghum (Sorghum vulgare), millet (Setaria italica), soybean (Glycine max), peanut (Arachis phyogaea), sweet potato (Ipomoea batatas), rice (Oryza sativa), Masson pine (Pinus massoniana) and Schima superba. We had developed a new model to estimate the water use efficiency in response to the combined effects of light and CO2 concentration. Our measured data validated that this model could simulate the changes of water use efficiency very well under combined effect of light and CO2 concentration. It could be used to estimate contribution of photosynthesis increase and transpiration decline on water use efficiency with the rising of CO2 concentration. Great differences in water use efficiency occurred in these different plant species under various CO2 concentration levels. Based on water use efficiency at regional scale, we concluded that plants should be separated into C3 plants and C4 plants, and furthermore, C3 plants should be separated into herbaceous plants and woody plants. Our separation criteria would do a great favor in modeling the evapotranspiration of terrestrial ecosystem with carbon and water balance.  相似文献   

4.
Cunningham SC 《Oecologia》2005,142(4):521-528
Rainforests occur in high precipitation areas of eastern Australia, along a gradient in seasonality of precipitation, ranging from a summer dry season in the temperate south to a winter dry season in the tropical north. The response of net photosynthesis to increasing vapour pressure deficit (VPD) was measured in a range of Australian rainforest trees from different latitudes to investigate possible differences in their response to atmospheric drought. Plants were grown in glasshouses under ambient or low VPD to determine the effect of growth VPD on the photosynthetic response. Temperate species, which experience low summer precipitation, were found to maintain maximum net photosynthesis over the measurement range of VPD (0.5–1.9 kPa). In contrast, the tropical species from climates with high summer precipitation showed large reductions in net photosynthesis with increasing VPD. Temperate species showed higher intrinsic water-use efficiencies under low VPD than the tropical species, whereas their efficiencies were similar under high VPD. Growing plants under a low VPD had little effect on either the photosynthetic response to VPD or the intrinsic water-use efficiency of the species. These different responses of gas exchange to VPD shown by the tropical and temperate rainforest species may reflect different strategies to maximise productivity in their respective climates.  相似文献   

5.
Previous leaf‐scale studies of carbon assimilation describe short‐term resource‐use efficiency (RUE) trade‐offs where high use efficiency of one resource requires low RUE of another. However, varying resource availabilities may cause long‐term RUE trade‐offs to differ from the short‐term patterns. This may have important implications for understanding canopy‐scale resource use and allocation. We used continuous gas exchange measurements collected at five levels within a Norway spruce, Picea abies (L.) karst., canopy over 3 years to assess seasonal differences in the interactions between shoot‐scale resource availability (light, water and nitrogen), net photosynthesis (An) and the use efficiencies of light (LUE), water (WUE) and nitrogen (NUE) for carbon assimilation. The continuous data set was used to develop and evaluate multiple regression models for predicting monthly shoot‐scale An. These models showed that shoot‐scale An was strongly dependent on light availability and was generally well described with simple one‐ or two‐parameter models. WUE peaked in spring, NUE in summer and LUE in autumn. However, the relative importance of LUE for carbon assimilation increased with canopy depth at all times. Our results suggest that accounting for seasonal and within‐canopy trade‐offs may be important for RUE‐based modelling of canopy carbon uptake.  相似文献   

6.
不同植物叶片水分利用效率对光和CO2的响应与模拟   总被引:2,自引:0,他引:2  
植物叶片水分利用效率的高低取决于气孔控制的光合作用和蒸腾作用两个相互耦合的过程,模拟水分利用效率对环境变化的响应特征和机制是理解生态系统碳循环和水循环及其耦合关系的基础.研究通过人工控制光强和CO2浓度,对叶片水分利用效率进行了研究.提出了植物水分利用效率在光强和CO2浓度共同作用下的估算模型.数据分析表明,该模型在包括C3和C4植物、草本和木本植物在内的9种植物上能很好地模拟水分利用效率对光强和CO2浓度共同作用的响应.该模型可以用于估算CO2浓度升高条件下光合速率的提高和蒸腾速率的降低对水分利用效率提高的贡献量.CO2浓度变化条件下,水分利用效率在不同植物之间有巨大差异,研究区域尺度植物的水分利用效率时至少需要将植物区分为C4植物和C3植物,其中C3植物区分为草本和木本植物3种生态功能型才能较为准确地估算植物的整体水分利用效率.应用本研究提出的水分利用效率估算模型和植物水分利用效率生态功能型分类标准,可以为建立以植物的水分利用效率为基本参数的陆地生态系统水循环模型和陆地生态系统生产力模型提供重要依据.  相似文献   

7.
冠层高度对毛竹叶片光合生理特性的影响   总被引:2,自引:0,他引:2  
借助LI-6400便携式光合作用系统,研究了冠层高度对不同林龄毛竹(Phyllostachys pubescens)叶片光合生理特性和水分利用效率(WUE)的季节性影响,为促进毛竹林碳汇能力和生产力提升的林分结构调整等可持续栽培技术提供理论依据。结果表明:(1)出笋期,不同竹龄毛竹叶片净光合速率(Pn)和蒸腾速率(Tr)的日均值呈现出冠层上部小于冠层下部的梯度变化趋势,且2a生毛竹不同冠层Pn日均值大于3a生毛竹;孕笋行鞭期,不同林龄毛竹各时间点Pn值和日均值、以及2年生毛竹各时间点的Tr值均为冠层上部大于冠层下部。各生长季节,不同林龄毛竹个体叶片的气孔导度(Gs)均与Tr的变化趋势一致。(2)2年生毛竹各季节仅冠层上部叶片会出现"光合午休",而3年生毛竹仅于出笋期时各冠层叶片出现"光合午休"现象。(3)出笋期毛竹叶片WUE日均值随着冠层高度增加而增加,这种变化趋势不受竹龄影响;而孕笋行鞭期,仅2年生毛竹叶片WUE日均值随着冠层高度增加而下降。不同冠层高度的孕笋行鞭期毛竹叶片WUE日均值都显著高于出笋期;冠层高度对毛竹叶片气体交换特性和WUE的影响受生长发育关键期的季节因素影响,且毛竹叶片WUE与Gs之间存在负相关关系,其不受毛竹个体年龄和叶片冠层高度影响。(4)不同生长季节各冠层叶绿素a/b值均随着冠层高度下降而降低,不同林龄毛竹叶片叶绿素含量基本随着冠层自上而下呈逐渐增加的趋势。各生长季节,不同林龄个体叶片氮素含量、比叶重随冠层高度垂直变化趋势与叶片Pn日均值的垂直变化趋势一致。研究认为,毛竹不同冠层部位叶片通过改变形态、氮素含量来适应不同生长季节生长环境的变化,以便充分利用光能提高光合能力。  相似文献   

8.
Species' differences in the stringency of stomatal control of plant water potential represent a continuum of isohydric to anisohydric behaviours. However, little is known about how quasi‐steady‐state stomatal regulation of water potential may relate to dynamic behaviour of stomata and photosynthetic gas exchange in species operating at different positions along this continuum. Here, we evaluated kinetics of light‐induced stomatal opening, activation of photosynthesis and features of quasi‐steady‐state photosynthetic gas exchange in 10 woody species selected to represent different degrees of anisohydry. Based on a previously developed proxy for the degree of anisohydry, species' leaf water potentials at turgor loss, we found consistent trends in photosynthetic gas exchange traits across a spectrum of isohydry to anisohydry. More anisohydric species had faster kinetics of stomatal opening and activation of photosynthesis, and these kinetics were closely coordinated within species. Quasi‐steady‐state stomatal conductance and measures of photosynthetic capacity and performance were also greater in more anisohydric species. Intrinsic water‐use efficiency estimated from leaf gas exchange and stable carbon isotope ratios was lowest in the most anisohydric species. In comparisons between gas exchange traits, species rankings were highly consistent, leading to species‐independent scaling relationships over the range of isohydry to anisohydry observed.  相似文献   

9.
贵州喀斯特森林三种植物对不同坡位环境的光合生理响应   总被引:1,自引:0,他引:1  
该研究以贵州普定喀斯特森林中、下坡位生长的构树( Broussonetia papyrifera)、朴树( Celtis sinensis)和光滑悬钩子( Rubus tsangii)为材料,通过对碳酸酐酶( CA)活性、光合作用日变化、净光合速率对CO2与光的响应曲线、叶绿素荧光特性以及稳定碳同位素组成等指标的测定,进而对比分析三种植物不同的光合生理响应特性。结果表明:构树光合作用过程的无机碳源既可来自大气中的CO2,也可以在气孔部分闭合的情况下利用细胞内的HCO3-,下坡位的构树较高的CA活性使其利用HCO3-的效率会更高,并能在较低光强下具有较高的光能利用效率。这可能与下坡位的构树具有较高的CA活性有关,对下坡位具有更好的适应性。朴树光合无机碳的同化能力最低,且光合无机碳源较单一,主要利用大气CO2,其较慢的生长速率使其对无机碳的需求最低,且能保持较稳定的无机碳同化速率。相对来说,中坡位的朴树具有相对较高的净光合速率和光能利用效率,对中坡位表现出较好的适应性。光滑悬钩子主要利用大气中的CO2进行光合作用。中坡位的光滑悬钩子具有较强的光能利用效率,并表现出较高的净光合速率,光滑悬钩子对中坡位同样表现出较好的适应性。该研究结果为喀斯特生态脆弱区植被重建过程中树种的选择及合理配置提供了科学依据。  相似文献   

10.
The regulation of photosynthesis through changes in light absorption, photochemistry, and carboxylation efficiency has been studied in plants grown in different environments. Iron deficiency was induced in sugar beet (Beta vulgaris L.) by growing plants hydroponically in controlled growth chambers in the absence of Fe in the nutrient solution. Pear (Pyrus communis L.) and peach (Prunus persica L. Batsch) trees were grown in field conditions on calcareous soils, in orchards with Fe deficiency-chlorosis. Gas exchange parameters were measured in situ with actual ambient conditions. Iron deficiency decreased photosynthetic and transpiration rates, instantaneous transpiration efficiencies and stomatal conductances, and increased sub-stomatal CO2 concentrations in the three species investigated. Photosynthesis versus CO2 sub-stomatal concentration response curves and chlorophyll fluorescence quenching analysis revealed a non-stomatal limitation of photosynthetic rates under Fe deficiency in the three species investigated. Light absorption, photosystem II, and Rubisco carboxylation efficiencies were down-regulated in response to Fe deficiency in a coordinated manner, optimizing the use of the remaining photosynthetic pigments, electron transport carriers, and Rubisco.  相似文献   

11.
Nonlinear responses of photosynthesis to the CO2 concentration at which plants were grown (Cg) have been often reported in the literature. This study was designed to develop mechanistic understanding of the nonlinear responses with both experimental and modelling approaches. Soybean (Glycine max) was grown in five levels of Cg (280, 350, 525, 700, 1000 ppm) with either a high or low rate of nitrogen fertilization. When the rate of nitrogen fertilization was high, the photosynthetic rate measured at Cg was highest in plants from the 700 ppm CO2 treatment. When the rate of nitrogen fertilization was low, little variation was observed in the photosynthetic rates of plants from the different treatments measured at their respective Cg. Measurements of CO2-induced changes in mass-based leaf nitrogen concentration (nm, an index of changes in biochemical processes) and leaf mass per unit area (h, an index of morphological properties) were used in a model and indicate that the nonlinearity of photosynthetic responses to Cg is largely determined by relative changes in photosynthetic sensitivity, biochemical downregulation, and morphological upregulation. In order to further understand the nonlinear responses, we compiled data from the literature on CO2-induced changes in nm and h. These compiled data indicate that h generally increases and nm usually decreases with increasing Cg, but that the trajectories and magnitudes of the changes in h and nm vary with species and growth environments. Integration of these variables (nm and h) into a biochemically based model of photosynthesis enabled us to predict diverse responses of photosynthesis to Cg. Thus a general mechanism is suggested for the highly variable, nonlinear responses of photosynthesis to Cg reported in the literature.  相似文献   

12.
Abstract. Rapid, tropic leaf movements and photo-synthetic responses of the heliotropic plant, soybean, Glycine max cv. Cumberland, grown under two different nitrogen, three different light and two different water treatments were examined. Measurements of leaf orientation during midday periods outdoors, and tropic reorientation of leaflets in response to vertical illumination indoors, revealed a positive, linear relationship between leaf water potential and the cosine of the angle of incidence between the leaf and the direct beam of the excitation light. This relationship was altered by nitrogen availability, such that a lower cosine of incidence (lower leaf irradiance) for a given leaf water potential was measured for plants grown under low nitrogen compared to those grown under high nitrogen. Additionally, plants grown under low nitrogen and low water availability showed more rapid rates of leaf movement compared to plants receiving high levels of these resources. Light regime during growth had no effect on the relationship between the cosine of incidence and leaf water potential. Reduced water and nitrogen availabilities during growth resulted in lower photosaturated rates of photosynthesis and stomatal conductance, as well as alterations in the relationship between these parameters. Thus, higher values for the ratio of intercellular CO2/ambient CO2 were measured for low-N grown plants (higher nitrogen use efficiencies) and lower values of this ratio for water stressed plants (higher water use efficiencies). The results show that environmental growth conditions other than water availability have the potential to modify leaf orientation responses to vectorial light in heliotropic legumes such as soybean. This has implications for the potential of heliotropic movements to minimize environmental stress-induced damage to the photosynthetic apparatus, and to modulate leaf-level resource use efficiencies.  相似文献   

13.
Grasslands account for a large proportion of global terrestrial productivity and play a critical role in carbon and water cycling. Within grasslands, photosynthetic pathway is an important functional trait yielding different rates of productivity along environmental gradients. Recently, C3-C4 sorting along spatial environmental gradients has been reassessed by controlling for confounding traits in phylogenetically structured comparisons. C3 and C4 grasses should sort along temporal environmental gradients as well, resulting in differing phenologies and growing season lengths. Here we use 10 years of satellite data (NDVI) to examine the phenology and greenness (as a proxy for productivity) of C3 and C4 grass habitats, which reflect differences in both environment and plant physiology. We perform phylogenetically structured comparisons based on 3,595 digitized herbarium collections of 152 grass species across the Hawaiian Islands. Our results show that the clade identity of grasses captures differences in their habitats better than photosynthetic pathway. Growing season length (GSL) and associated productivity (GSP) were not significantly different when considering photosynthetic type alone, but were indeed different when considering photosynthetic type nested within clade. The relationship between GSL and GSP differed most strongly between C3 clade habitats, and not between C3-C4 habitats. Our results suggest that accounting for the interaction between phylogeny and photosynthetic pathway can help improve predictions of productivity, as commonly used C3-C4 classifications are very broad and appear to mask important diversity in grassland ecosystem functions.  相似文献   

14.
In this study, we hypothesized that invasive species may allocate a higher fraction of leaf nitrogen (N) to photosynthesis than phylogenetically related native species. To test this hypothesis, we determined N allocation and other ecophysiological traits of three invasive species in comparison with their respective native congeners by measuring response curves of photosynthesis to intercellular CO2 concentration. The invasive species of Peperomia and Piper indeed allocated a higher fraction of leaf N to photosynthesis and were more efficient in photosynthetic N (N P) partitioning than their native congeners. The two invasive species partitioned a higher fraction of N P to carboxylation and showed a higher use efficiency of N P, while their native congeners partitioned a higher fraction of N P to light-harvesting components. The higher N allocation to photosynthesis and the higher N P partitioning to carboxylation in the two invaders were associated with their higher specific leaf area. Nitrogen allocation and partitioning were the most important factors in explaining the differences in light-saturated photosynthetic rate and photosynthetic N use efficiency (PNUE) between the two invasive species and their native congeners. The differences in N allocation-related variables between the invasive and native species of Amaranthus could not be evaluated in this study due to the method. Except PNUE, resource capture- and use-related traits were not always higher in all three invasive species compared to their native congeners, indicating that different invasive species may have different syndrome of traits associated with its invasiveness.  相似文献   

15.
水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响   总被引:41,自引:6,他引:35  
樟子松以其抗寒、抗旱和速生性,自20世纪50年代在科尔沁沙地南缘人工引种用于固沙造林试验成功以来,已成为我国北方荒漠化地区防风固沙造林的首选树种。然而,进入20世纪90年代以来,早期引种的沙地樟子松人工林出现了衰退现象;虽然从理论上分析,原因可能有病虫害、地理位置、水分条件、营林技术等,但其中水分条件应该是沙地樟子松人工林提早衰退的最重要的原因之一。以1~5年生樟子松幼苗为材料,采用盆栽控水处理法对苗木进行水分胁迫试验,观测水分胁迫条件下樟子松苗木成活与光合特征及其水分利用效率的变化。结果表明,樟子松苗木成活的临界土壤含水率随苗龄的变化没有显著差异,1~5年生苗木成活的临界土壤含水率均在1.5%~1.8%之间。4种不同水分胁迫处理(对照、20%、30%和40%田间持水量)对光合特性的影响为:轻度胁迫(40%田间持水量)时对光合特性的各个指标影响不大;随胁迫程度加重,光合速率、气孔导度、胞间CO2浓度和蒸腾速率逐渐降低;导致樟子松苗木光合速率降低的主要原因应是气孔因素,即在水分胁迫下,气孔的开张度减小,导致胞间CO2浓度和蒸腾速率下降,进而影响光合速率;另外,水作为光合作用的原料之一,当其供应不足时,也直接导致光合速率的降低。2年生、4年生的樟子松幼苗在相同的土壤干旱胁迫条件下,各生理指标比较接近,即生理指标与苗龄之间并没有表现出明显区别。樟子松苗木的水分利用效率在较重度胁迫(20%田间持水量,3.5%)条件下没有降低,而在轻度胁迫条件下,水分利用效率有升高趋势;表明樟子松在较低的土壤含水量条件下,具有忍耐一定干旱胁迫的能力。综合研究表明:樟子松只有在极度水分胁迫时(土壤含水率接近成活的临界土壤含水率值:对于1~5年生苗木约为1.7%)才会出现死亡,这对研究水分与樟子松人工林衰退关系具有参考价值。  相似文献   

16.
We investigated physiological and morphological traits underlying variation in relative growth rate (KGR) among wheat cultivars. Subsequently, we determined whether higher RGR is correlated with higher water demand and lower plant water use efficiency (WUEp). Further, the correlation between water use efficiency and leaf nitrogen concentration was examined. For this purpose we chose lour cultivars contrasting in RGR or WUEp. Gas exchange of shoots and respiration of roots were measured on intact plants over a 24 h period, and total carbon and nitrogen concentrations of all plant parts were determined. The highest RGR was achieved by the cultivars with the highest leaf area ratio. WUEp was strongly dependent on photosynthetic water use efficiency and was highest for the cultivars with the highest rate of photosynthesis, which achieved higher rates of photosynthesis per unit leaf nitrogen. We found no evidence for a functional or genetic link between the physiological traits underlying differences in RGR (specific leaf area and leaf area ratio) and those causing variation in water use efficiency (photosynthetic rate and transpiration rate). These results indicate that, in wheat, it may be possible to select simultaneously for traits associated with a high WUEp and a high RGR.  相似文献   

17.
The facultative hemiparasitic angiosperm Rhinanthus minor was grown on 11 different host species, and in the absence of a host. The height of R. minor parasitising the legume Trifolium pratense exceeded that of unattached plants by more than an order of magnitude, with performance on grasses and non-legume dicotlyedonous hosts between these two extremes. Light saturated rates of photosynthesis in R. minor on different hosts ranged from 1. 5 to 22. 5 μmol g−1 dry weight min−1, and were positively correlated with growth. Foliar nitrogen concentrations in the parasite exceeded those of the hosts. The former were positively related to light saturated rates of photosynthesis, and inversely related to photosynthetic nitrogen use efficiency. There was no relationship between leaf nitrogen concentration and water use efficiency in R. minor. The data are discussed in relation to studies of nitrogen and water use in mistletoes.  相似文献   

18.
Abies alba and Abies pinsapo are closely related species with the same ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco) large subunit (rbcL) but contrasting hydraulic traits and mesophyll structure occurring in the Iberian Peninsula under contrasting conditions. As photosynthesis and hydraulic capacities often co‐scale, we hypothesize that these species differ in mesophyll conductance to CO2 (gm). gm and key anatomical traits were measured in both species. Drought‐adapted population of A. pinsapo has higher photosynthesis than the more mesic population of A. alba, in agreement with its higher hydraulic capacity. However, A. alba exhibits the largest stomatal conductance (gs), and so water use efficiency (WUE) is much higher in A. pinsapo. The differences in photosynthesis were explained by differences in gm, indicating a correlation between hydraulic capacity and gm. We report a case where gm is the main factor limiting photosynthesis in one species (A. alba) when compared with the other one (A. pinsapo). The results also highlight the discrepancy between gm estimates based on anatomical measurements and those based on gas exchange methods, probably due to the very large resistance exerted by cell walls and the stroma in both species. Thus, the cell wall and chloroplast properties in relation to CO2 diffusion constitute a near‐future research priority.  相似文献   

19.
Net photosynthesis and transpiration of seedlings from shade tolerant, moderately tolerant and intolerant tree species were measured in ambient carbon dioxide (CO2) concentrations ranging from 312 to 734 ppm. The species used, Fagus grandifolia Ehrh. (tolerant), Quercus alba L., Q. rubra L., Liriodendron tulipifera L. (moderately tolerant), Liquidambar styraciflua L. and Pinus taeda L. (intolerant), are found co-occurring in the mixed pine-hardwood forests of the Piedmont region of the southeastern United States. When seedlings were grown in shaded conditions, photosynthetic CO2 efficiency was significantly different in all species with the highest efficiency in the most shade tolerant species, Fagus grandifolia , and progressively lower efficiencies in moderately tolerant and intolerant species. Photosynthetic CO2 efficiency was defined as the rate of increase in net photosynthesis with increase in ambient CO2 concentration. When plants which had grown in a high light environment were tested, the moderately tolerant and intolerant deciduous species had the highest photosynthetic CO2 efficiencies but this capacity was reduced when these species grew in low light. The lowest CO2 efficiency and apparent quantum yield occurred in Pinus taeda in all cases. Water use efficiency was higher for all species in enriched CO2 environments but transpiration rate and leaf conductance were not affected by CO2 concentration. High photosynthetic CO2 efficiency may be advantageous for maintaining a positive carbon balance in the low light environment under a forest canopy.  相似文献   

20.
Factors that contribute to interspecific variation in photosynthetic nitrogen-use efficiency (PNUE, the ratio of CO2 assimilation rate to leaf organic nitrogen content) were investigated, comparing ten dicotyledonous species that differ inherently in specific leaf area (SLA, leaf area:leaf dry mass). Plants were grown hydroponically in controlled environment cabinets at two irradiances (200 and 1000 μmol m–2 s–1). CO2 and irradiance response curves of photosynthesis were measured followed by analysis of the chlorophyll, Rubisco, nitrate and total nitrogen contents of the leaves. At both irradiances, SLA ranged more than twofold across species. High-SLA species had higher in situ rates of photosynthesis per unit leaf mass, but similar rates on an area basis. The organic N content per unit leaf area was lower for the high-SLA species and consequently PNUE at ambient light conditions (PNUEamb) was higher in those plants. Differences were somewhat smaller, but still present, when PNUE was determined at saturating irradiances (PNUEmax). An assessment was made of the relative importance of the various factors that underlay interspecific variation in PNUE. For plants grown under low irradiance, PNUEamb of high-SLA species was higher primarily due to their lower N content per unit leaf area. Low-SLA species clearly had an overinvestment in photosynthetic N under these conditions. In addition, high SLA-species allocated a larger fraction of organic nitrogen to thylakoids and Rubisco, which further increased PNUEamb. High-SLA species grown under high irradiance showed higher PNUEamb mainly due to a higher Rubisco specific activity. Other factors that contributed were again their lower contents of Norg per unit leaf area and a higher fraction of photosynthetic N in electron transport and Rubisco. For PNUEmax, differences between species in organic leaf nitrogen content per se were no longer important and higher PNUEmax of the high SLA species was due to a higher fraction of N in␣photosynthetic compounds (for low-light plants) and a higher Rubisco specific activity (for high-light grown plants). Received: 11 October 1997 / Accepted: 9 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号